Assessing Communication and Clinical Effectiveness of Self-managed Speech-language Therapy: a randomized control trial of a novel digital therapeutic in individuals with post-stroke aphasia (ACCESS)

> Swathi Kiran, PhD, CCC-SLP¹ Steven Cramer, M.D.²

¹Boston University ²University of California at Los Angeles

10 November 2021

Aphasia is...

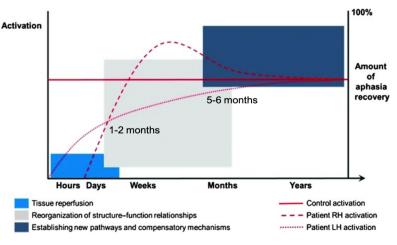
common

~1/3 of all stroke survivors | affecting 2M individuals in U.S. alone¹

debilitating

 Linked to higher overall mortality, reduced functional recovery, reduced rates of return to work, social isolation & reduced QoL²⁻⁵

treatable


 Behavioral speech-language therapy (SLT) results in clinically significant improvements in language and communication outcomes⁶

¹National Aphasia Association (NAA) Aphasia Fact Sheet ; ²Laska et al., J Int Med (2001); ³Paolucci et al., Cerebrovascular Diseases (1998); ⁴Bhogal et al., Stroke (2003); ⁶Bakheit et al., Clin. Rehab. (2007); ⁶Brady et al., Cochrane Database Syst Rev. (2016)

SLT: State of the evidence

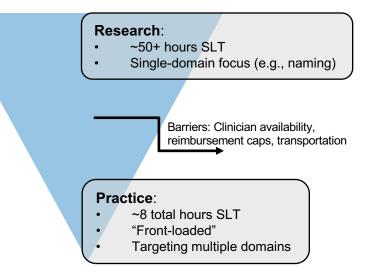
Timing

- Good evidence for SLT-induced improvement in chronic phase¹⁻³
- Equivocal evidence for improvement in very early acute phase⁴⁻⁷
- Limited evidence for subacute phase⁸⁻¹¹
 - Potential for disease trajectory modifying tx

¹Brady et al., Cochrane Database Syst Rev. (2016); ²Breitenstein et al., The Lancet (2017); ³Palmer et al., Lancet Neurol. (2019); ⁴Godecke et al., Int J Stroke (2012); ⁵Godecke et al., Int J Stroke (2020); ⁶Laska et al., Cerebrovasc Dis Extra (2011); ⁷Nouwens et al., European Stroke Journal (2017); ⁸Bakheit et al., Clin. Rehab. (2007); ⁹Martins et al., Int J Lang Comm Dis (2013); ¹⁰Sickert et al., JNNP (2014); ¹¹van der Meulen et al., Neurorehab Neural Repair (2014); ¹²Bhogal et al., Stroke (2003); ¹³Skolarus et al., Stroke (2017); ¹⁴Cavanaugh et al., AJSLP (2021); ¹⁵ASHA National Outcomes Measurement System: Adults in Healthcare–Outpatient National Data Report 2019

Kiran, Meier & Johnson, 2019

SLT: State of the evidence


Timing

- Good evidence for SLT-induced improvement in chronic phase¹⁻³
- Equivocal evidence for improvement in very early acute phase⁴⁻⁷
- Limited evidence for subacute phase⁸⁻¹¹

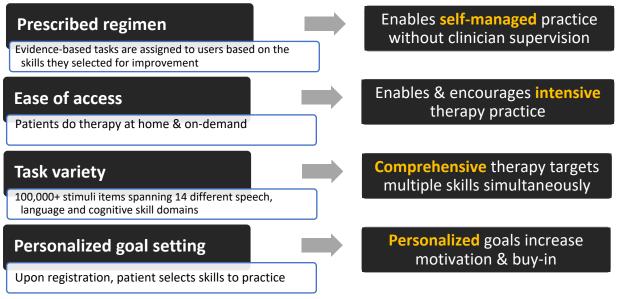
Intensity

- High intensity &/or dosage SLT → improved communication outcomes^{1,12}
- Dosage gap b/w research & practice¹³⁻¹⁵

¹Brady et al., Cochrane Database Syst Rev. (2016); ²Breitenstein et al., The Lancet (2017); ³Palmer et al., Lancet Neurol. (2019); ⁴Godecke et al., Int J Stroke (2012); ⁵Godecke et al., Int J Stroke (2020); ⁶Laska et al., Cerebrovasc Dis Extra (2011); ⁷Nouwens et al., European Stroke Journal (2017); ⁸Bakheit et al., Clin. Rehab. (2007); ⁹Martins et al., Int J Lang Comm Dis (2013); ¹⁰Sickert et al., JNNP (2014); ¹¹van der Meulen et al., Neurorehab Neural Repair (2014); ¹²Bhogal et al., Stroke (2003); ¹³Skolarus et al., Stroke (2017); ¹⁴Cavanaugh et al., AJSLP (2021); ¹⁵ASHA National Outcomes Measurement System: Adults in Healthcare–Outpatient National Data Report 2019

Digital health advances in SLT

- Digital therapeutics enable effective, high intensity therapy at home
 - Reduce traditional barriers to access^{1,2}
 - Well-established for post-stroke motor rehab³⁻⁶
- Emerging clinical trial evidence for efficacy in aphasia
 - Single-impairment therapies for naming, sentence production, auditory comprehension⁷⁻¹¹
 - Few studies of comprehensive, self-managed therapies¹²


¹Hall et al., Int J Telerehabil. (2013); ²Weidner & Lowman, Perspectives of the ASHA Special Interest Groups (2020); ³Lin et al., Stroke (2018); ⁴Chen et al., Int J Med Inform (2019); ⁵Cramer et al., JAMA Neurol (2019); ⁶Cramer et al., Front Neurol (2020); ⁷Palmer et al., Lancet Neurol. (2019); ⁸Woolf et al., Clin Rehabil (2016); ⁹Kurland et al., JSLHR (2018); ¹⁰Furnas et al., Aphasiology (2014); ¹¹Fleming et al., JNNP (2020); ¹²Braley et al., Front Neurol (2021)

Constant Therapy digital health platform

 Commercially available app with 400K users worldwide, including 37K clinicians

Mechanisms of Action

Therapy Ingredients

& Rehabilitation Sciences: Sargent College Department of Speech, Language & Hearing Sciences

Clinical evidence for Constant Therapy

Preliminary clinical evidence

Study	Subjects	Main Finding	RCT?
Des Roches et al., 2015 ¹	Persons with aphasia (PWA) (N=51)	At-home CT + in-clinic practice → greater improvement in language compared to in-clinic practice only	×
Godlove et al., 2019 ²	PWA, acute + chronic (N=3,686, <i>retrospective</i> <i>analysi</i> s)	At-home CT → more frequent practice & faster task mastery compared to in-clinic CT	×
Braley et al., 2021 ³	PWA, chronic (N=32)	Intensive, 10-week regimen of CT led to greater improvement in WAB-R AQ scores compared to active control workbook therapy	\checkmark

CT has promising evidence but has not yet been studied in full-scale RCT or in acute recovery

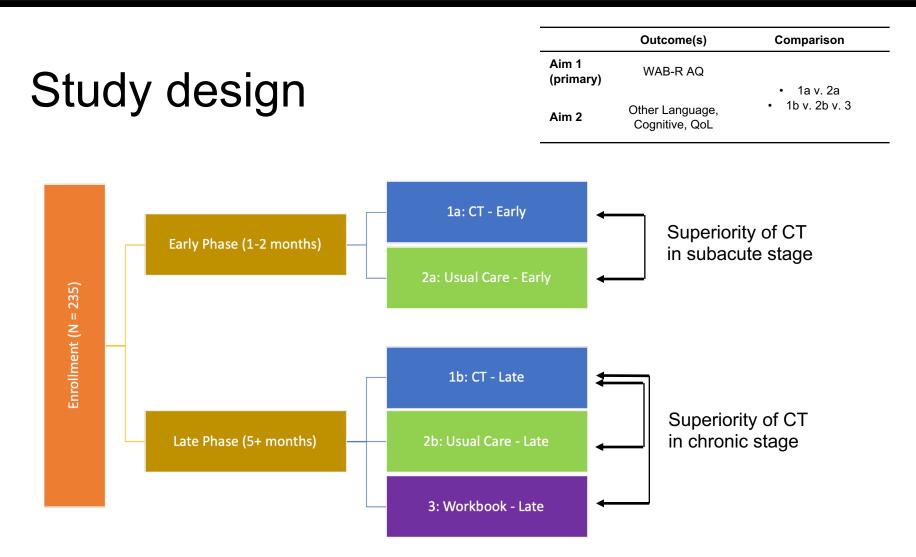
¹Des Roches et al., Front Human Neuroscience (2015); ²Godlove et al., Front Neurol (2019); ³Braley et al., Front Neurol (2021)

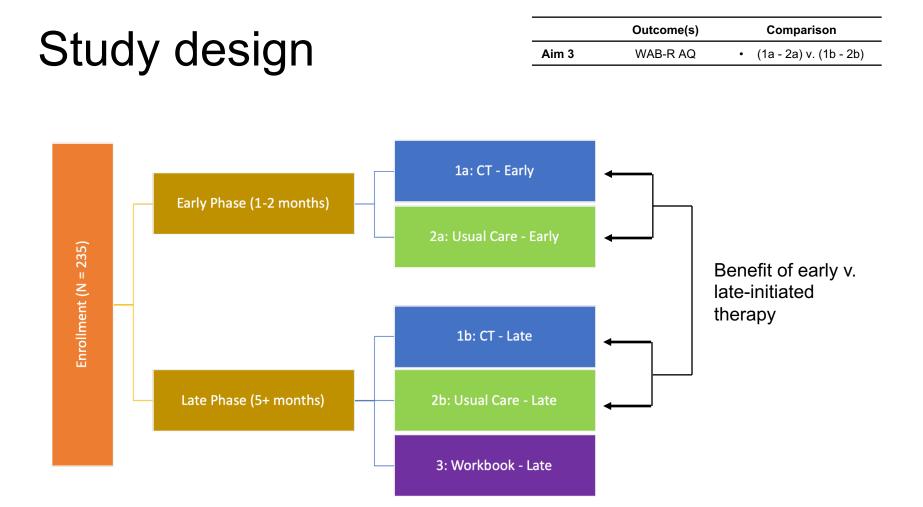
Primary aim

- Determine whether use of Constant Therapy (CT) improves
 Ianguage recovery over 10 week treatment period, vs. selfmanaged workbook practice (WB) and usual care (UC)
 - i. In the **subacute** phase (1-2 months post-stroke), determine whether CT intervention is superior to UC
 - ii. In the **chronic** phase (5-6 months post-stroke), determine whether CT intervention is superior to (a) WB, (b) UC

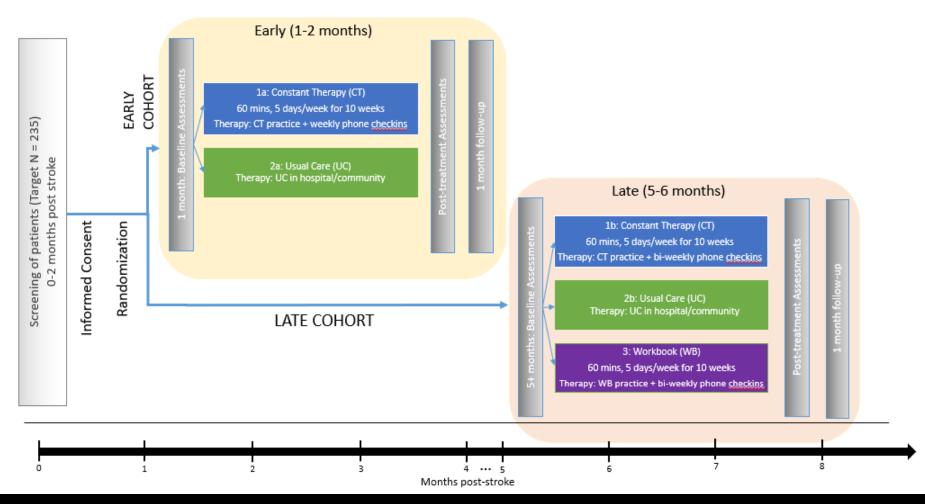
Primary Outcome: Western Aphasia Battery Aphasia Quotient (WAB-R AQ) at 10 weeks

Central Hypothesis: CT intervention is superior to active and usual care comparators, in both subacute and chronic post-stroke stages

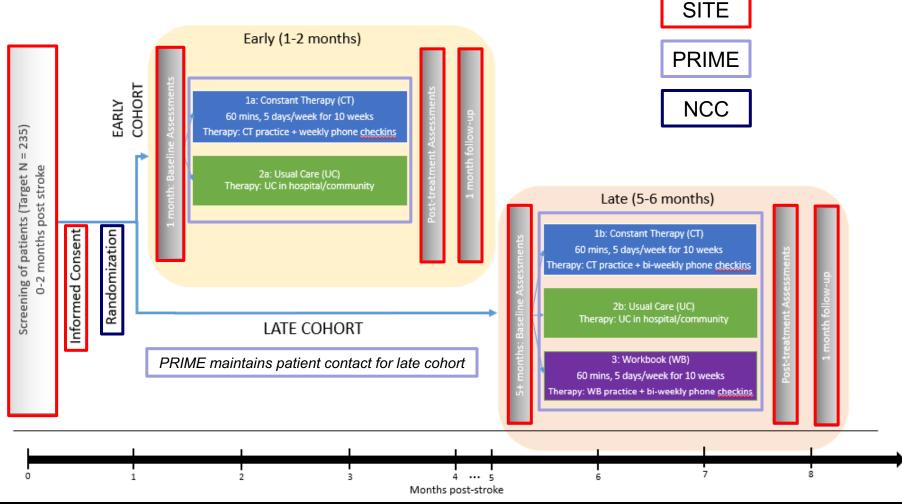

Participants


Inclusion

- Left-hemisphere ischemic or hemorrhagic stroke resulting in speech, language with or without cognitive deficits
- Confirmed aphasia (Quick Aphasia Battery < 8.9)
- 1-2 months post-stroke at time of enrollment, recruitment of potential participants can begin any time after stroke
- Medically stable and discharged from hospital or rehabilitation setting
- 18 80 years old at time of consent
- Premorbid fluency in English
- Family member or care partner willing and able to help with delivery of therapy over the duration of the study period


Exclusion

- Major, active neurological condition(s) other than stroke
- History of cognitive impairment unrelated to stroke
- History of symptomatic stroke prior to index stroke
- Severe uncorrected vision and/or hearing problems likely to impact study participation
- Current diagnosis, determined through patient self-report, of major clinical depression (PHQ-9 > 9) or other psychiatric conditions likely to impact study participation
- Pre-stroke diagnosis of learning or language disorder
- MoCA memory scores ≤ 7
 - Severe apraxia of speech or dysarthria, as determined by a clinician based on performance on the Apraxia of Speech Rating Scale and/or medical records
- Completion of ≥ 50 Constant Therapy items in last 60 days



Study Design and Timing

Site involvement

Successful outcomes from ACCESS

- Provide critical scientific insight into timing of SLT
 - Recovery can be modified with acute intensive treatment
- Transform the clinical landscape of evidence-based SLT for individuals with post-stroke aphasia
 - Improve communication outcomes regardless of aphasia type or severity with full suite of personalized, comprehensive therapy
 - Enable access to SLT & mitigate inequities of service delivery with self-managed, at-home, low-cost therapy
 - Equip clinicians with tools to optimize practice, considering COVID-induced disruptions to traditional service delivery models