November 18, 2021

Yale School of Medicine Genetics Clinical Grand Rounds

NIH StrokeNet Grand Rounds Webinar

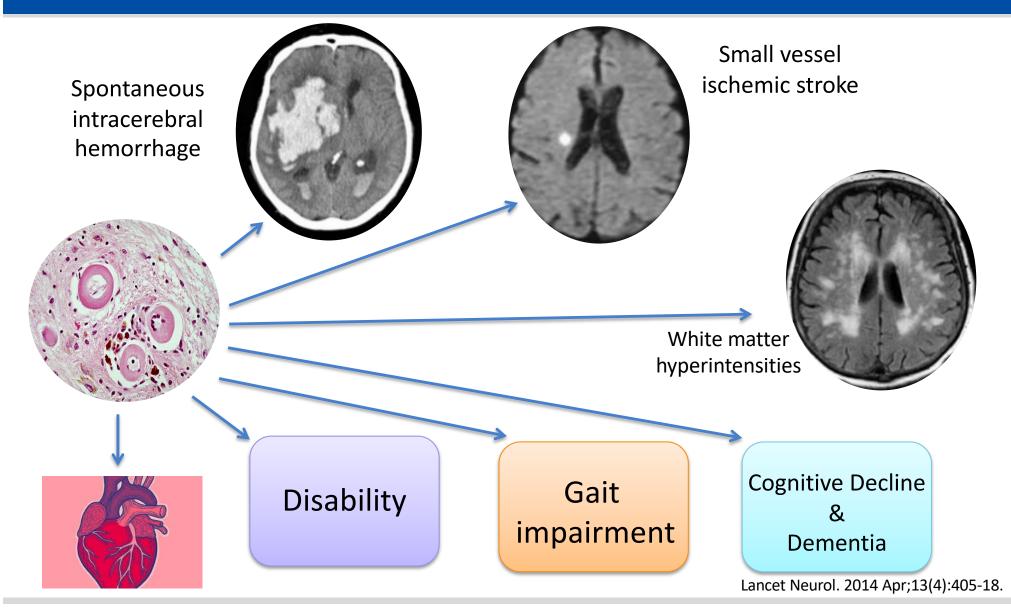
Emerging Analysis Methods Related to Genetics and Personalized Medicine

Guido J. Falcone MD, ScD, MPH Assistant Professor & Staff Neurointensivist Director of Clinical Research in Neurocritical Care Division of Neurocritical Care, Department of Neurology Yale School of Medicine & Yale-New Have Hospital

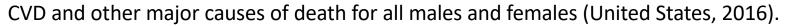
Disclosures / Conflicts of interest

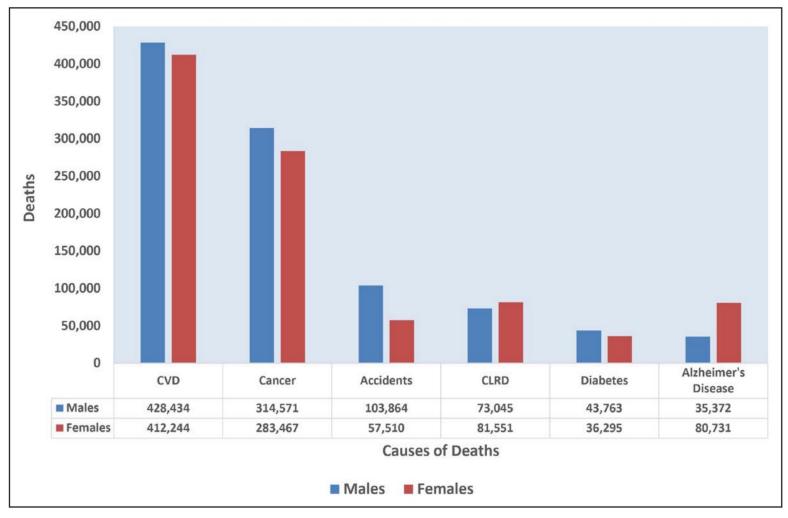
- Conflicts of Interest
 - None
- Disclosures / Funding
 - AHA / Institute for Precision Cardiovascular Medicine (18IDDG34280056)
 - AHA / Bugher Centers of Excellency in Hemorrhagic Stroke Research (817874)
 - NIH/NIA (K76AG059992)
 - NIH/NIA (P30AG021342 / Supplement)
 - NIH/NINDS (R03NS112859)
 - Neurocritical Care Society Research Fellowship

Roadmap

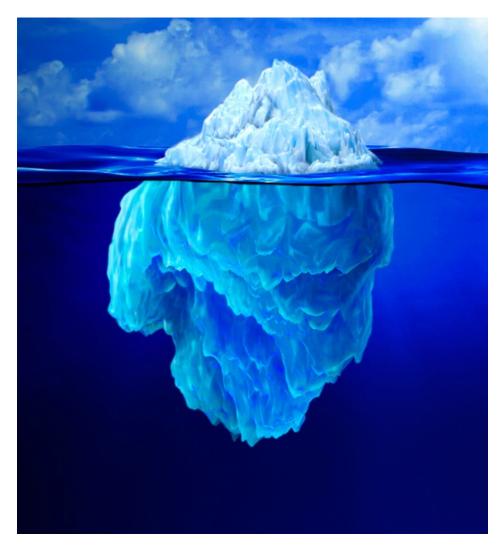

- What we do
- Concrete examples related to stroke genomics
 - Pathway discovery
 - Prediction
- Ongoing and future plans to bring population genetics to the bedside of stroke patients
 - Clinical trials as a platform
 - Returning polygenic risk score results to treating clinicians

Part I What do we do? How do we do it?




Cardiovascular & Cerebrovascular Disease + Stroke

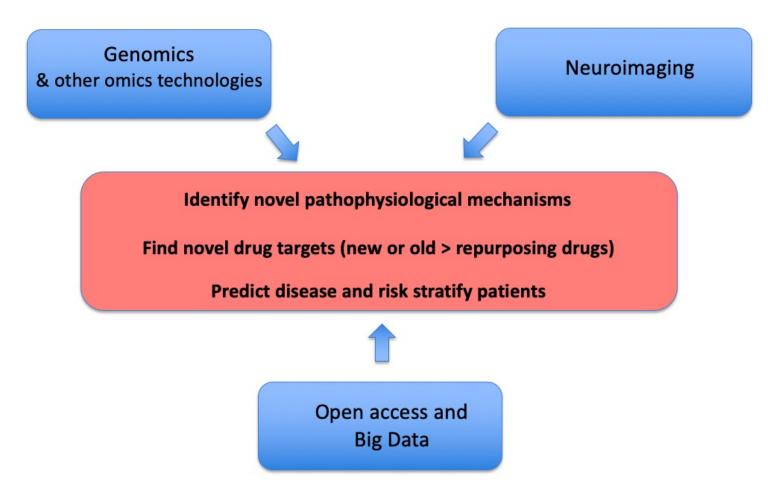
Yale school of medicine


Cardiovascular & Cerebrovascular Disease + Stroke

Heart Disease and Stroke Statistics—2019 Update

Cardiovascular & Cerebrovascular Disease + Stroke

CAD / MI Stroke Dementia


Cognitive decline Frailty

Heart Disease and Stroke Statistics—2019 Update

Yale school of medicine

Mission statement Bring genomic medicine to stroke patients

Research strategy

Part II Causal inference & pathway discovery

Genetically-Determined Lipid Levels and

Risk of Hemorrhagic Stroke

Prior evidence

- Elevated LDL is bad in general, however ...
- Evidence from observational studies
 - Total cholesterol and LDL: inverse association with ICH
- Evidence from randomized clinical trials
 - Post-hoc analysis of the SPARCL trial (secondary prevention)
 - atorvastatin is associated with increased ICH risk

Elayna Kirsch

Hypothesis and Goals

- Investigate whether the cumulative burden of genetic variants related to lipid levels influences ICH risk
- Investigate whether the association above is mediated by specific lipid (total cholesterol versus LDL versus HDL versus triglycerides)
- Evaluate the causal effect of genetically-instrumented lipids levels on ICH risk

Methods

Stage 1

Identify lipid-related loci (p<1x10E-8)

Construct lipid fraction-specific polygenic risk scores (PRS)

Test for association between each PRS and its corresponding lipid fraction in the UK Biobank

Stage 2

Association between lipids PRS and risk of ICH 4 case/control genetic studies of ICH

Implement sensitivity analysis to test different building strategies for the GRS building

Stage 3

Utilize the effect estimates from Stage 1 and Stage 2 to conduct Mendelian Randomization analyses to estimate the effect of instrumented lipid levels and risk of ICH

Population characteristics

Effect of Lipid PRS on lipids

Effect of Lipid PRS on risk of intracerebral hemorrhage

Characteristic	UK Biobank	GOCHA	ISGC ICH Study	GERFHS
Analytical stage	Association Cholesterol level ~ PRS	Association ICH Risk ~ PRS	Association ICH Risk ~ PRS	Association ICH Risk ~ PRS
Study design	Cohort	Case / Control	Case / Control	Case / Control
Study participants	316,428	277 / 248	563 / 523	446 / 490
Age, mean (SD)	68 (8)	73 (10) / 72 (8)	71 (14) / 66 (16)	70 (14) / 68 (13)
Female sex n, %	170,871 (54)	130 (47) / 123 (50)	252 (45) / 255 (49)	211 (47) / 235 (48)
Genotyping platform	Affymetrix UK Biobank array	Illumina HumanHap550	Illumina HumanHap550	Affymetrix 6.0
Genotyped SNPs	820,967	527,508	527,508	580,491
Imputed SNPs	73,355,667	7,965,700	7,965,700	7,967,430

Lipid-based polygenic risk scores explain a significant proportion in the observed variation in lipids

Lipid Trait PRS	Independent SNPS in PRS	UK Biobank Effective sample size	Mean increase in cholesterol trait per 1-SD increase in PRS	Standard error	Variance explained	Ρ
Primary analysis *						
Total Cholesterol	410	316,428	0.33 mmol/L	0.0018	9.33%	<1x10 ⁻¹⁰⁰
LDL Cholesterol	339	315,841	0.24 mmol/L	0.0014	8.38%	<1x10 ⁻¹⁰⁰
HDL Cholesterol	393	289,349	0.11 mmol/L	0.0006	8.17%	<1x10 ⁻¹⁰⁰
Triglycerides	317	316,174	0.22 mmol/L	0.0017	4.8%	<1x10 ⁻¹⁰⁰
Secondary analysis **						
Total Cholesterol	410	437,676	0.26 mmol/L	0.0017	5.21%	<1x10 ⁻¹⁰⁰
LDL Cholesterol	339	436,867	0.19 mmol/L	0.0013	4.72%	<1x10 ⁻¹⁰⁰
HDL Cholesterol	393	400,579	0.11 mmol/L	0.0005	8.04%	<1x10 ⁻¹⁰⁰
Triglycerides	317	437,331	0.23 mmol/L	0.0015	5%	<1x10 ⁻¹⁰⁰

Lipid-based polygenic risk scores for total and LDL cholesterol and risk of intracerebral hemorrhage

Study -	Total Cholesterol		LDL Cholesterol		HDL Cholesterol		Triglycerides	
	OR (95% CI)	Ρ	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р
GOCHA	0.95 (0.80 - 1.1)	0.59	0.93 (0.78 - 1.1)	0.41	1.1 (0.94 - 1.3)	0.20	0.95 (0.80 - 1.1)	0.59
ISGC ICH Study	0.93 (0.82 - 1.1)	0.24	0.88 (0.77 - 0.99)	0.04	1.1 (1.0 - 1.3)	0.03	1.0 (0.90 - 1.1)	0.84
GERFHS	0.88 (0.77 - 1.0)	0.07	0.85 (0.75 - 0.97)	0.02	0.99 (0.86 - 1.1)	0.84	1.2 (1.0 - 1.4)	0.009
Metanalysis	0.92 (0.85 - 0.99)	0.03 Het-p 0.77	0.88 (0.81 - 0.95)	0.002 Het-p 0.75	1.10 (1.01 - 1.21)	0.06 Het-p 0.23	1.11 (0.98 - 1.23)	0.14 Het-p 0.08

Genetically-elevated total and LDL cholesterol are associated with decreased risk of ICH

Mendelian Randomization Method	Instrument	Total Choleste	rol	LDL Cholesterol		
	instrument	OR (95%CI)	Р	OR (95%CI)	Р	
Ratio method	Polygenic risk score using on individual level data	0.77 (0.6 - 0.98)	0.03	0.59 (0.42 - 0.82)	0.002	
IVW	Multiple SNPs using summary level data	0.84 (0.72 - 0.99)	0.04	0.65 (0.52 - 0.82)	<0.001	
Weighted median	Multiple SNPs using summary level data	0.95 (0.72 - 1.30)	0.74	0.79 (0.56 - 1.10)	0.20	
MR-Egger (Intercept)	Multiple SNPs using summary level data	1.0 (0.99 - 1.0)	0.81	1.0 (0.98 - 1.0)	0.59	

How about aneurysmal subarachnoid hemorrhage? (the other frequent form of hemorrhagic stroke)

- Two sample Mendelian Randomization
- Instruments
 - Independent (r2 <0.1) SNPs associated with circulating LDL-C at genome-wide levels (p<5e-8)
 - Total: 117 SNPs
- Primary analysis:
 - Europeans + Asians
 - Composite of aneurysm presence or aneurysmal subarachnoid hemorrhage
- Secondary analyses:
 - Europeans only
 - Aneurysmal subarachnoid hemorrhage

Ann Neurol. 2021 Oct 28. Online ahead of print. PMID: 34709661

Julian Acosta

How about aneurysmal subarachnoid hemorrhage? (the other frequent form of hemorrhagic stroke)

MR Method		OR (95%CI)	р	
Primary analysis				
IVW	117	0.83 (0.73-0.94)	0.004	
Secondary analyses				
WM	117	0.81 (0.7-0.95)	0.008	
MR-Egger	117	0.65 (0.52-0.81)	< 0.001	
MR-PRESSO	116	0.85 (0.76-0.95)	0.005	
LDL-C specific	39	0.82 (0.68-0.98)	0.03	
European ancestry only				
IVW	129	0.84 (0.73-0.96)	0.01	
WM	129	0.8 (0.67-0.96)	0.02	_
MR-Egger	129	0.68 (0.53-0.86)	0.002	
MR-PRESSO	128	0.86 (0.76-0.97)	0.01	0.50 0.60 0.70 0.80 0.90 1.0 1.1

Ann Neurol. 2021 Oct 28. Online ahead of print. PMID: 34709661

More on CNS and LDL lowering PCSK-9 inhibition and risk of Alzheimer's Disease

Study	# SNPs	Drug use protective	Drug use detrimental	OR	95% CI
General LDL-C lowering	9				
IGAP, 2019	54		+	0.98	[0.88; 1.10]
PGC	55			1.01	[0.74; 1.38]
Fixed effect model		<	>	0.99	[0.89; 1.09]
Heterogeneity: $I^2 = 0\%$, $p =$	= 0.88				
HMGCR inhibition					
IGAP, 2019	14			0.94	[0.63; 1.39]
PGC	14			0.75	[0.27; 2.05]
Fixed effect model		\langle		0.91	[0.63; 1.31]
Heterogeneity: $I^2 = 0\%$, $p =$	= 0.68				
PCSK9 inhibition					
IGAP, 2019	30			1.41	[1.19; 1.67]
PGC	31			1.73	[1.12; 2.67]
Fixed effect model			\diamond	1.45	[1.23; 1.69]
Heterogeneity: $I^2 = 0\%$, $p =$	= 0.39				
ApoB antisense					
IGAP, 2019	27			1.14	[0.93; 1.38]
PGC	26			1.03	[0.61; 1.75]
Fixed effect model		-	\sim	1.12	[0.94; 1.35]
Heterogeneity: $I^2 = 0\%$, $p =$	= 0.74				
NPC1L1 blockade					
IGAP, 2019	20	_		1.30	[0.78; 2.17]
PGC	25			0.68	[0.21; 2.17]
Fixed effect model		-		1.17	[0.73; 1.87]
Heterogeneity: $I^2 = 0\%$, $p =$	= 0.32	Г Т			
		0.25 0.5	1 1.5 3		
			D lower LDL-C		
		AD lisk per St			

Ann Neurol. 2020 Jan; 87(1): 30–39.

Yale school of medicine

Possible mechanisms?

• BBB integrity

 Adequate lipid level is essential for maintaining normal membrane fluidity and vessel integrity -> low LDL-C leads to increased blood-brain barrier permeability with increased vessel wall smooth muscle necrosis.

• Two hits hypothesis

• Lipid lowering (first hit) plus additional stressors (blood thinners, hypertension, inflammation/infection) lead to BBB permeability

Stroke. 2009 Feb;40(2):454-61. Atherosclerosis. 2018 Mar;270:191-192.

Some answers are coming

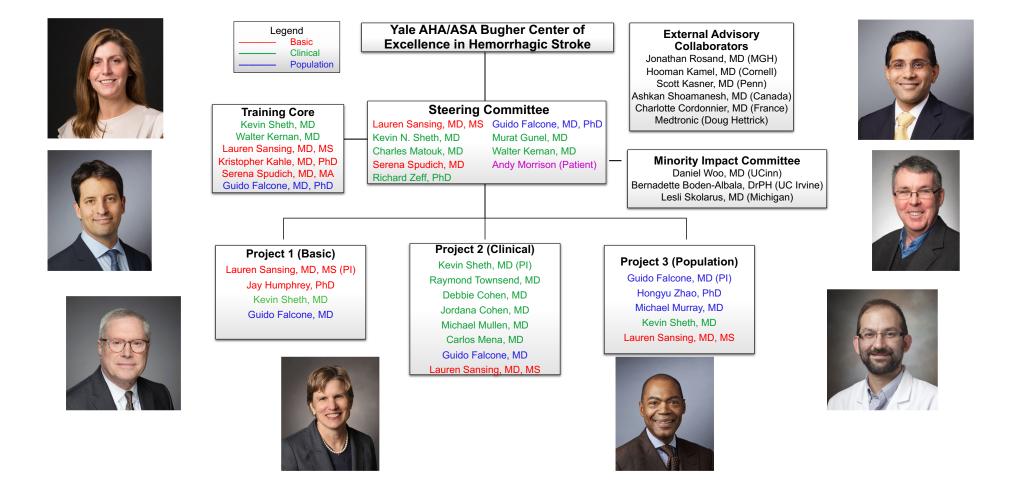
- SATURN Randomized clinical trial
 - STATINS USE IN INRACEREBRAL HEMORRHAGE PATIENTS
- Funded by the NINDS
- PROBE design
 - pragmatic, prospective, randomized, open-label, and blinded end-point assessment
- 140 sites in the US and Canada
- 1500 survivors of intracerebral hemorrhage with an indication for a statin
- Randomized to continuing or stopping statins

Part IV

The present is exciting, the future is even better

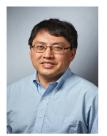
How do we bring stroke genomics to the bedside?

AHA Bugher Network of Centers for ICH Research \$11M gift from the Bugher Foundation


Yale University School of Medicine

University of California San Francisco

Yale/AHA Bugher Center for ICH Research


Polygenic Susceptibility to Hypertension in ICH: from Population Studies to Precision Medicine at the Bedside

Hypothesis:

Polygenic susceptibility to hypertension influences the clinical trajectory of ICH survivors

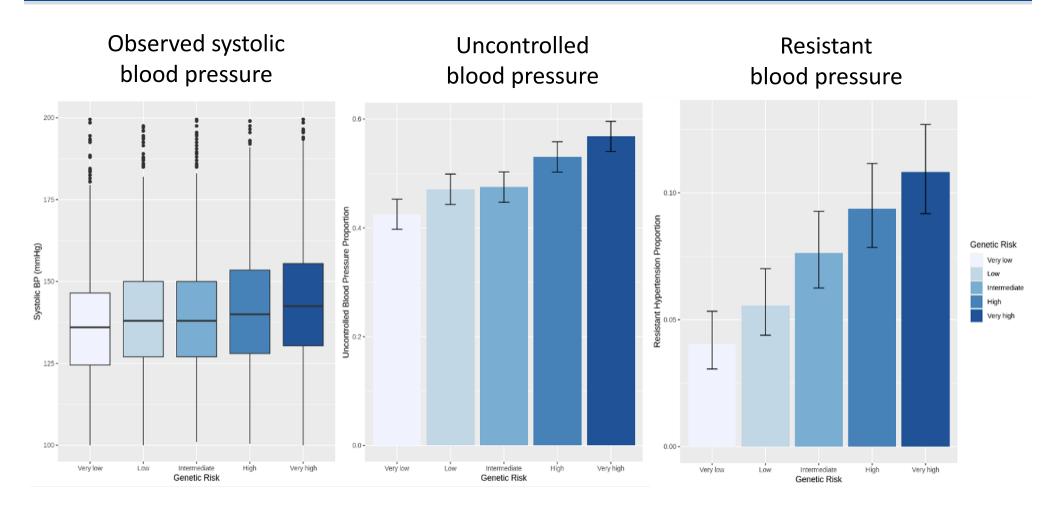
Main goal

Evaluate clinical applications of genomic data and bring population genetics to the bedside of ICH survivors

Hongyu Zhao Yale

Michael Murray Yale

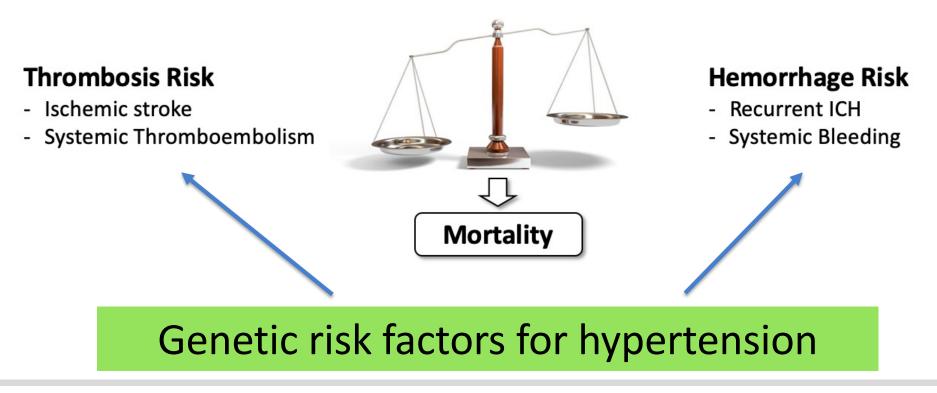
Jonathan Rosad MGH / Broad


Daniel Woo U of Cincinnati

Ashkan Shoamanesh McMaster

Yale school of medicine

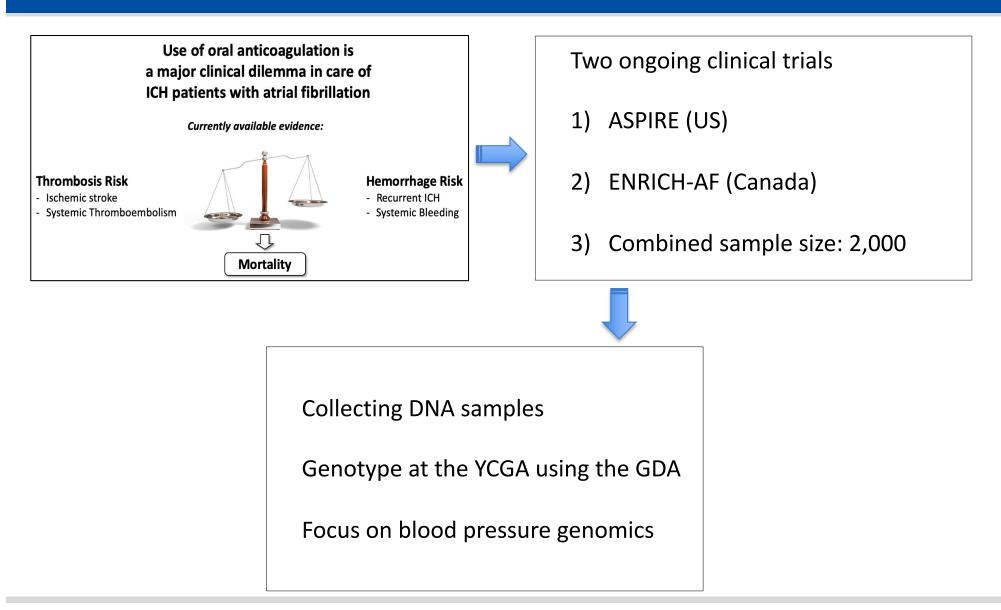
Polygenic susceptibility to hypertension and blood pressure trajectories after stroke 4,652 ischemic and hemorrhagic strokes enrolled in the UK Biobank



Stroke genomics at the bedside

Polygenic susceptibility to hypertension in survivors of intracerebral hemorrhage with afib

Use of oral anticoagulation is a major clinical dilemma in care of ICH patients with atrial fibrillation


Currently available evidence:

Yale school of medicine

Stroke genomics at the bedside

Polygenic susceptibility to hypertension in survivors of intracerebral hemorrhage with afib

Stroke genomics at the bedside Return of genomic information related to blood pressure to patients and doctors *Generations Project*

To learn more about Generations and how you can participate, please contact us at: 1-877-978-8343 | helpusdiscover@yale.edu

Yale Center for Genomic Health

300 Cedar Street Suite S-355 New Haven, CT 06520

1-877-978-8343 helpusdiscover.yale.edu

Michael F. Murray, MD Principal Investigator HIC #2000024015

Yale school of medicine

Generations Project

- Led by Yale Center for Genomic Health.
- Formal launch September 2019.
- Plan is to enroll \geq 100K volunteers across the Yale Health System
 - Genome-wide genotyping using Illumina's GDA array
 - Whole exome sequencing
- Link their electronic health record (EHR) to their DNA sequence data in a EHR-DNA dataset that enables both research and clinical care.
- Collaboration between: Yale New Haven Health System & Yale School of Medicine

Generations Project

- 1. De-identified Data for Research
 - DNA sequence linked to EHR
- 2. <u>Banked Bio-specimens for Research and Clinical</u>
 - Germline DNA, other
- 3. Participants for New Studies
 - Available for re-contact (clinical trials, surveys, deep phenotyping, other)
- 4. Precision Medicine Clinical Results Delivered
 - Genomic reports into EHR and implementation of care

Stroke genomics at the bedside

Return of genomic information related to blood pressure to patients and doctors

Generations Project

- Enroll 500 stroke survivors in Generations
- Calculate polygenic risk score using ~600 independent genetic risk variants for elevated blood pressure
- Use All of Us to calculate the ancestry-specific distribution of this blood-pressure related polygenic risk score
- Assign low, intermediate or high genetic risk based on tertiles of the polygenic risk score
- Return the information on genetic risk to doctors and patients
 - Interpretability
 - Willingness to act on this information
- Enrolled to far: 60

In summary

- Cardiovascular / Cerebrovascular disease poses a complex challenge
 - Clinically evident events is only the tip of the iceberg
 - Cognitive decline, dementia and disability are becoming the focus of research
- Concrete example (Causal inference / new targets)
 - Mendelian randomization analysis
 - Elevated LDL levels associated with decreased risk of intracerebral hemorrhage
- Concrete example (Risk prediction)
 - Stroke and MI in middle aged adults without risk factors
- Genomic medicine is here
 - Yale/AHA Bugher Center > bring genomic medicine to stroke survivors
 - Project 1: Blood pressure genomics in stroke survivors who also have afib > anticoagulation?
 - Project 2 via Generations: Return genetic information on blood pressure to stroke survivors

Acknowledgements

Falcone Lab

Guido Falcone Julian Acosta Natalia Szejko Stacy Brown Cameron Both Audrey Leasure Rommell Noche Kevin Vanent

Yale Collaborators

Kevin Sheth Thomas Gill Lauren Sansing Hongyu Zhao Murat Gunel Charles Matouk Michael Murray Ira Hall Sam Payabvash Walter Kernan

External Collaborators

Jonathan Rosand Daniel Woo Christopher Anderson Alessandro Biffi Carl Langefeld Hooman Kamel Santosh Murthy Jin-Moo Lee Raj Dahr

Institutions & Centers

International Stroke Genetics Consortium Yale Pepper Older Americans Independence Center Paul B. Beeson Emerging Leaders CDA Award in Aging AHA Institute for Precision Cardiovascular Medicine Neurocritical Care Society

Funding

NIH/NIA (K76AG059992) NIH/NINDS (R03NS112859) NIH/NIA (P30AG021342) AHA (18IDDG34280056) AHA (817874)