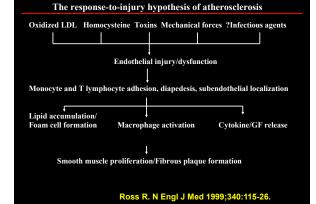


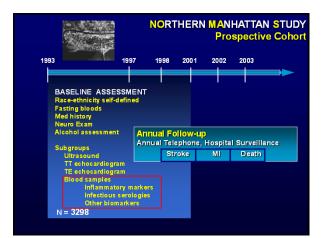
Disclosure Information

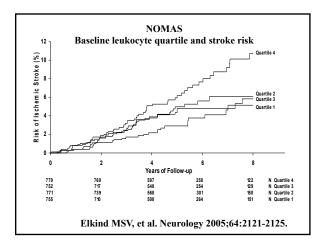
FUNDING SOURCES:

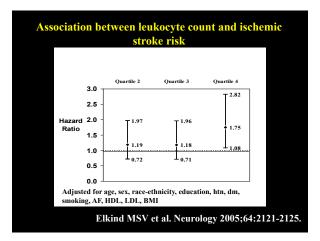
NINDS R01 NS 48134, R01 NS 50724, R37 NS 29993 NINDS P50 NS 49060, R01 NS55809, R01 NS62820, LeDucq; diaDexus, Inc.; BMS-Sanofi Partnership

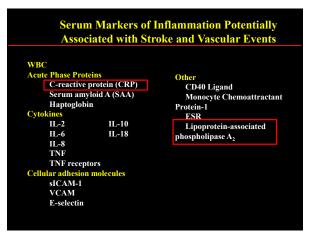
FINANCIAL DISCLOSURES

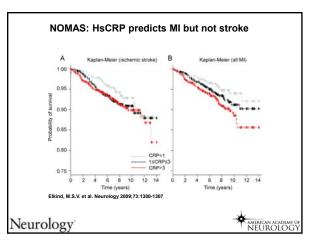

BMS-Sanofi Partnership; BMS-Pfizer; Biogen IDEC; Jarvik Heart; diaDexus, Inc.; Novartis/Organon; Merck; Daiichi-Sankyo; Janssen; Boehringer-Ingelheim


Inflammatory Biomarkers in Acute Stroke and Stroke Prevention


Outline


- Inflammatory markers and stroke risk
- Infectious markers and stroke risk
- · Acute infection and stroke risk
- Inflammation and acute stroke


Implications for stroke trials?

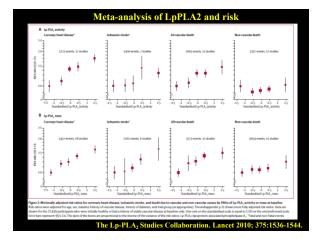


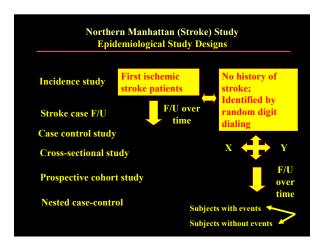
C-Reactive Protein

- Acute phase protein
- Produced in liver and endothelial cells
- Final common pathway of
- cytokine activation
- Produced in response to a variety of infectious and inflammatory stimuli ("nonspecific")
- Predicts incident atherosclerotic and cardiovascular events

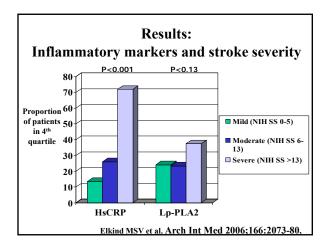
Pearson TA et al. Circulation 2003;107:499-511

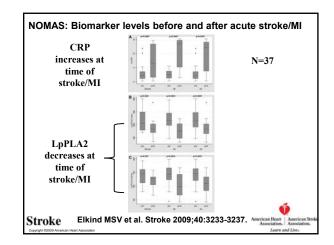
NOMAS: HsCRP predicts MI but not stroke			
Characteristics	Mean or Prevalence		
Age, mean (\pm SD), y	68.9 (<u>+</u> 10.1)		
Male, n (%)	803 (35.9)		
Race / Ethnicity, n (%)			
White	420 (18.8)		
Black	526 (23.5)		
Hispanic	1235 (55.1)		
Education Level, n (%)			
\geq High school	996 (44.5)		
Smoking Status, n (%)			
Non-Smoker	1071 (47.9)		
Past Smoker	784 (35.0)		
Current Smoker	383 (17.1)		
CAD, n (%)	475 (21.2)		
Diabetes Mellitus, n (%)	479 (21.5)		

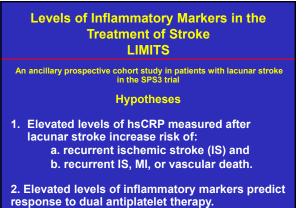

CRP is associated with other risk factors				
Increased CRP	Decreased CRP			
Hypertension	Alcohol			
BMI	consumption			
Obesity	Physical activity			
Diabetes	Weight loss			
Metabolic syndrome	Medications			
Smoking	Statins			
Hormone use ACEI				
Most studies that have shown an association between hsCRP and risk factors have been done in stroke-free subjects				

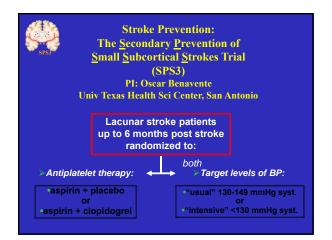

PRIMARY PREVENTION:			
CDC/AHA Consensus On Inflammatory Markers			
HsCRP assay is optimal inflammate	ory marker thus far		
HsCRP may be useful in estimating risk of future cardiovascular events , particularly in persons at intermediate risk based on other risk factors			
hsCRP concentration	<u>Risk Level</u>		
<1 mg/L	Low		
1-3 mg/L	Medium		
>3 mg/L	High		

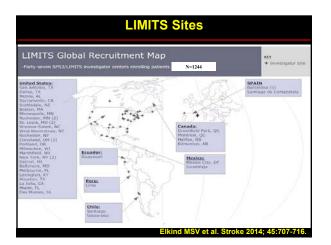
Pearson TA et al. Circulation 2003;107:499-511


Lipoprotein-associated phospholipase A2			
• 50 kDa, Ca-independent lipase produced by macrophages			
 Resides mainly on LDL in human plasma Highly upregulated in atherosclerosis 			
• Lp-PLA2 oxidizes LDL, generating pro-inflammatory			
mediators:			
Lysophosphatidylcholine (lyso-PC) and Oxidized fatty acid (oxFA)			
• In pre-clinical animal studies, inhibition of Lp-PLA2			
attenuates inflammatory process and slows atherosclerotic			
disease progression. Laine P et al. Circ. 1999.			
Hakkinen T et al. Arterioscler Thromb Vasc Biol. 1999. Approved by FDA for prediction of risk of first ischemic stroke.			
Ballantyne CM et al. Arch Intern Med 2005;165:2479-2484. Oei IIH et al. Circulation 2005;111:570-5.			
Darapladib, an inhibitor of LpPLA2, tested in phase 3 trial			


NOMAS: Lpl	NOMAS: LpPLA2 and atherosclerotic stroke				
	Unadjusted	Model 1*,	Model 2**,		
	HR (95% CI)	HR (95% CI)	HR (95% CI)		
LpPLA2-mass (per SD)	1.57 (1.26-1.96)	1.49 (1.18-1.88)	1.55 (1.17-2.04)		
LpPLA2-activity (per SD)	1.34 (0.92-1.94)	1.15 (0.76-1.73)	1.17 (0.71-1.92)		
LpPLA2-mass levels Q1 (28.1-245.6)	Ref.	Ref.	Ref.		
Q2 (245.7-307.2)	1.53 (0.26-9.15)	1.42 (0.24-8.52)	1.43 (0.23-8.46)		
Q3 (307.2-365.5)	4.63 (1.00-21.44)	4.09 (0.88-19.12)	4.47 (0.93-21.54)		
Q4 (365.5-972.6)	6.19 (1.39-27.64)	4.88 (1.06-22.45)	5.07 (1.07-24.06)		
Model 2: adjusted for age, sex activity, moderate alcohol cor	Model 1: adjusted age, sex, race-ethnicity, education Model 2: adjusted for age, sex, race-ethnicity, education, waist circumference, physical activity, moderate alcohol consumption, smoking, diabetes mellitus, systolic blood				
pressure, coronary artery disease, LDL, HDL Katan M et al. PLoS One 2014.					

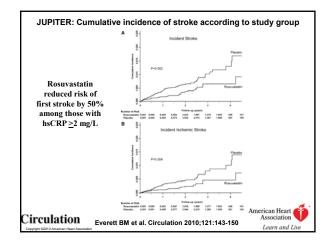



NOMAS stroke survivor follow-up: HsCRP predicts mortality, Lp-PLA2 predicts recurrent stroke (n=467)					
	HsCRP HR (95% CI)	Lp-PLA2 HR (95% Cl)			
Recurrent stroke (N=80 outcome events) Unadjusted Adjusted for demographics, risk factors,	0.86 (0.45-1.65)	2.30 (1.21-4.36)			
and both markers	0.68 (0.34-1.35)	2.06 (1.02-4.13)			
Recurrent stroke, MI, vascular death (N=122 events)					
Unadjusted Adjusted for demographics, risk factors, stroke severity, and both markers	1.86 (1.13-3.08)	2.38 (1.36-4.17)			
	0.98 (0.54-1.78)	1.86 (1.01-3.42)			
Death (N=158 outcome events)					
Unadjusted Adjusted for demographics, risk factors,	4.50 (2.83-7.15)	2.29 (1.43-3.67)			
stroke severity, and both markers	1.97 (1.13-3.44)	1.41 (0.84-2.38)			
Demographics: age, sex, race-ethnicity.					
Risk factors: history of CAD, DM, HTN, hyper	lipidemia, AF, and sm	oking.			



Elkind MSV et al. Stroke 2014; 45:707-716.

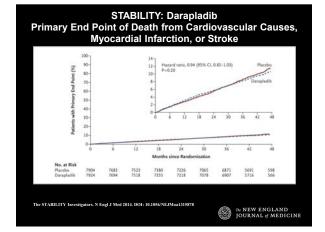
LIMITS: Risk of recurrent ischemic stroke CDC/AHA clinical thresholds (n=1244)

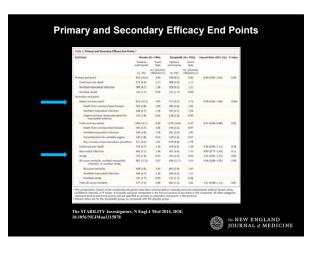

	Model	1	Model	2	Model	3
	HR (95% CI)	p	HR (95% CI)	P	HR (95% CI)	p
HsCRP		0.04		0.05		0.06
<1 mg/L (Referent)						
1-3 mg/L	1.75 0.90-3.38		1.82 0.94-3.56		1.82 0.94-3.55	
>3 mg/L	2.20 1.19-4.10		2.22 1.17-4.24		2.16 1.13-4.11	

Model 1: Unadjusted Model 2: Adjusted for Demographics and Co-morbidities (Hypertension, Smoking, History of Ischemic Stroke, Diabetes, Body mass index, Lowdensity lipoprotein and High-density lipoprotein) Model 3: Adjusted for Demographics, Co-morbidities, and Statin use

Elkind MSV et al. Stroke 2014; 45:707-716.

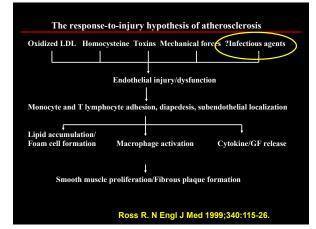
Results

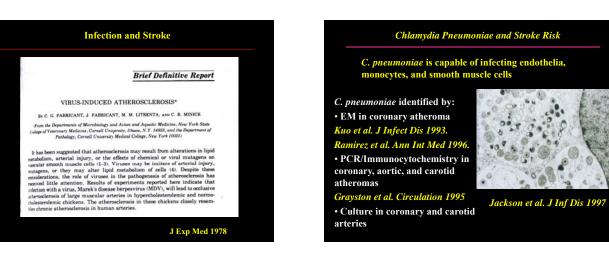

- Approximately 70% of recurrent ischemic strokes were lacunes.
- Results for lacunar stroke consistent with the effect on ischemic stroke (adj HR 2.27, 95% CI 0.90-5.75).
- No interactions with:
 - dual antiplatelet therapy
 - BP targets
 - Statin use
- Elkind MSV et al. Stroke 2014; 45:707-716.

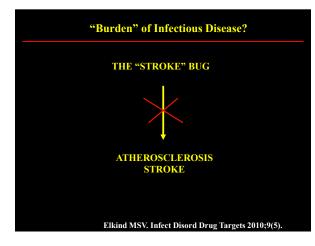


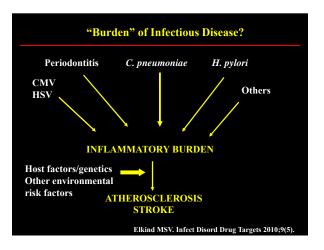
- Use of Inflammatory Biomarkers in Primary Prevention
 - Unlikely to be of value for general screening or for use in high risk or low risk populations
 - CRP associated with many other risk factors
 - HsCRP and LpPLA2 levels may be of incremental value in identification of patients at increased risk of stroke and other events, particularly for those at intermediate risk
- Use of Inflammatory Biomarkers in Secondary Prevention
 - CRP is an acute phase protein and is associated with severity of stroke
 - CRP and LpPLA2 may provide complementary information after stroke in general: CRP may be a better predictor of mortality while LpPLA2 may better predict risk of recurrent stroke and other vascular events
 - HsCRP may be a better prognostic marker in less severe stroke (lacunar stroke), or when measured at an interval of several weeks after stroke
 - Effect of hsCRP has a threshold rather than a continuous relationship.
 - HsCRP levels do not predict response to dual antiplatelet therapy or RP targets

Inflammation: Potential trials in secondary prevention


- 1. Use of CRP to stratify patients as being at high risk after lacunar stroke/mild stroke a. Improve power when testing an intervention
 - b. Limit risks to a high-risk population
- 2. Anti-inflammatory therapies:
 - a. Test for interaction of a therapy with biomarkers
 - b. Drugs
 - i. Statins
 - ii. Methotrexate
 - iii. LpPLA2 inhibitor (Darapladib)
 - iv. Others

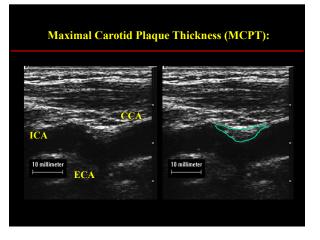




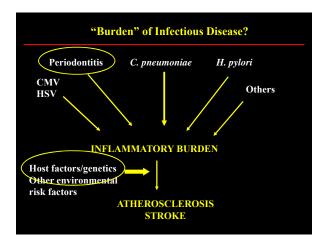

Outline

- Inflammatory markers and stroke risk
- Chronic infections and stroke risk
- · Acute infection and stroke risk
- Anti-inflammatory treatments

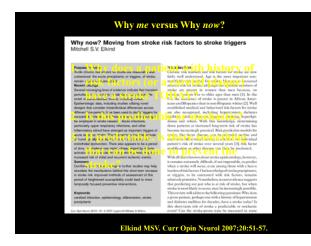
Results (n=1625)			
First stroke			
Positive Serology	Adjusted HR* (95 % CI)		
C. pneumoniae IgA	1.30 (0.75 – 2.25)		
H. pylori IgG	1.13 (0.68 – 1.89)		
CMV IgG	2.19 (0.84 - 5.70)		
HSV 1 IgG	1.35 (0.59 - 3.07)		
HSV 2 IgG	1.59 (0.91 – 2.76)		
*Adjusted for age, sex, race-ethnicity, high school education, CAD, systolic BP, HDL, LDL, blood sugar, alcohol, smoking, waist circumference, physical activity			

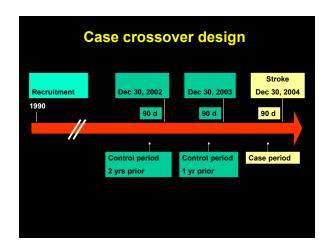

Elkind MSV et al. Arch Neurol 2010;67:33-38.

Hypothetical participan				
Serologies	Unadjusted Parameter estimate	Serologies	Infectious burden index	
C. Pneumoniae IgA	0.265	+	0.265	
H. Pylori IgG	-0.086		0	
CMV IgG	0.685	+	0.685	
HSV 1 IgG	0.220		0	
HSV 2 IgG	0.177	+	0.177	


Results (n=1625)				
		Hypothetical	participant	
Serologies	Unadjusted Parameter estimate	Serologies	Infectious burden index	
C. Pneumoniae IgA	0.265	+	0.265	
H. Pylori IgG	-0.086		0	
CMV IgG	0.685	+	0.685	
HSV 1 IgG	0.220		0	
HSV 2 IgG	0.177	+	0.177	
Total score			1.127	
Infectious burden index: mean 1.00 <u>+</u> 0.33, median 1.08				

Infectious bure	den and risk of f	irst stroke
	HR (95 % (CI) per SD IBI
	Among full cohort	Among those without


	(n=1625)	history of MI (n=1525)		
Unadjusted	1.39 (1.04 - 1.87)	1.51 (1.08 – 2.11)		
Adjusted for demographics*	1.42 (1.04 – 1.94)	1.54 (1.08 - 2.20)		
Adjusted for demographics* and risk factors†	1.39 (1.02 – 1.90)	1.50 (1.05 – 2.13)		
Adjusted for demographics*, risk factors,† and log hsCRP	1.39 (1.02 – 1.90)	1.52 (1.06 - 2.17)		
Adjusted for demographics, risk factors,† and log leukocyte count	1.40 (1.03 – 1.91)	1.51 (1.06 – 2.16)		
*Adjusted for age, sex, race-ethnicity, education, history of CAD, BS, SBP, waist circumference, HDL, LDL, cigarette smoking, alcohol consumption, physical activity.				
	Elkind MSV et al. Are	ch Neurol 2010;67:33-38.		



Infectious burd	len index and M n=861)	ЮРТ
	Change MCPT per SD IBI	р
Unadjusted	0.054 mm	0.07
Adjusted for demographics*	0.079 mm	0.01
Adjusted for demographics and risk factors** *Adjusted for age, sex, race-ethnic	0.087 mm	0.006
**Adjusted for above and history of circumference, HDL, LDL, smokin activity.		, physical

NON	AS: Nested	case-control	study
	(n=172 cases	344 controls	5)
F	ndpoint: all is	schemic strol	kes
	ocalcitonin and M		
	edicted ischemic	•	5, 5411101
Parameter	Hazard Ratio	95% Confidence Inte	erval
Second Quartile			
Copeptin	0.82	0.43	1.59
MRproANP	1.34	0.70	2.55
Procalcitonin	1.73	0.88	3.43
Third Quartile			
Copeptin	1.15	0.62	2.14
MRproANP	1.57	0.79	3.12
Procalcitonin	1.76	0.89	3.45
Fourth Quartile			
Copeptin	1.14	0.59	2.17
MRproANP	3.45	1.58	7.53
Procalcitonin	1.98	1.02	3.83
	y artery disease, physical	activity, alcohol consump	factors (diabetes mellitus, otion, smoking, LDL, HDI [et al. ISC 2014.

Cardiovascular Health Study

Sponsored by the National Heart, Lung and Blood Institute with additional contribution from the National Institute of Neurological Disorders and Stroke

http://chs-nhlbi.org

Methods

CHS Recruitment and Enrollment

• Multi-center prospective study of vascular risk factors in an elderly population-based cohort

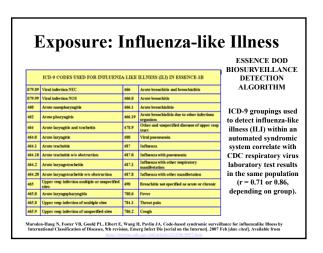
 Random sample of men and women
 <u>></u> 65 years recruited from Medicare eligibility lists in four U.S. communities:

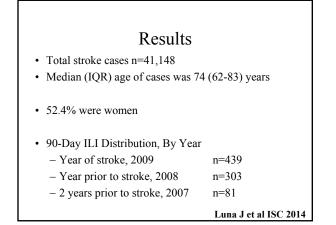
- Sacramento County, California
 Washington County, Maryland
 Forsyth County, North Carolina
- Pittsburgh, Pennsylvania
- The CHS enrolled 5888 participants 1989-93

Fried LP et al. Ann Epidemiol. 1991;1:263-276. Tell GS et al. Ann Epidemiol. 1993;3:358-366.

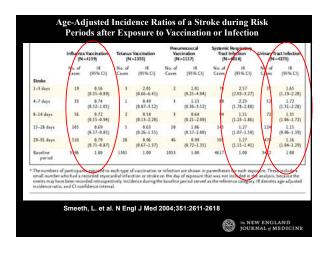
Baseline Characteristic	Case-Crossover Analysis
Daschine Characteristic	Case-Crossover Analysis
N (%)	669 (11.4)
Age (years)	74.0 ± 5.7
Women	408 (61.0)
Self-reported race	
Black	101 (15.1)
White	566 (84.6)
Other	2 (0.3)
Current Smoker	74 (11.1)
Diabetes	132 (19.7)
Hypertension	398 (59.5)
Total Cholesterol in mg/dL	213.4 ± 45.2

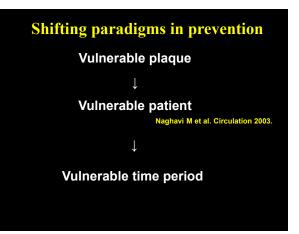
General infection class	ICD-9 code(s)	Frequency (%) of infections during 90-day case period	Frequency (%) infections during BOTH 90-day control periods
Respiratory	460-466, 480- 487	15	7
Urinary tract	599.0, 595, 590	7	8
Skin and subcutaneous tissue	680-686	2	0
Bacteremia	790.7	1	0
Osteomyelitis	730.0-730.2	1	0
Assorted	001-134	10	6
TOTAL		36	21


Association of recent hos Ca	pitalization fo		ith isc	hemic strok
Exposure Hosp for infection within:	Case intervals, n	Control intervals, n	OR	95 % CI
90 days prior to stroke				
No	631	1179		
Yes	29	17	3.4	1.8-6.5
30 days prior to stroke				
No	655	1193		
Yes	11	3	7.3	1.9-40.9
14 days prior to stroke				
No	660	1194		
Yes	8	2	8.0	1.6-77.3


	emic stroke durin hospitalization f ne-dependent su	or infection	
	14 days	30 days	90 days
Unadjusted	4.4 (2.2-9.3)	2.9 (1.6-5.3)	2.9 (2.0-4.2)
Adj for age, sex, race	4.0 (2.0 - 8.2)	2.5 (1.4-4.6)	2.5 (1.7-3.6)
Adj for above, DM, and smoking	3.9 (1.9-8.0)	2.5 (1.4-4.5)	2.4 (1.7-3.5)
Adjusted for above, common carotid IMT	3.9 (1.9-7.9)	2.4 (1.3-4.4)	2.4 (1.6-3.5)

Acute Influenza-like Illness and Ischemic Stroke


Luna J, et al. Stroke 2014 (ISC).



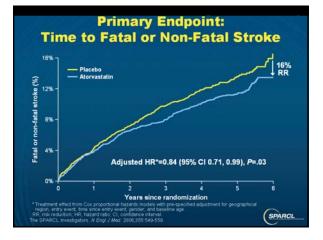
Multivariate Adjusted Results

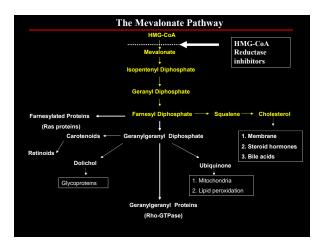
Risk Window	OR	9	5% CI
15-DAY	6.5	2	.2-19.7
30-DAY	3.7	1	.8- 8.3
90-DAY	3.3	2	.0- 5.8
Age Strata, 30-D	·	ND	070/ 01
	, i)R	95% CI
<45		б.б	95% CI 1.0- 267.2
	1		
<45 45 to <=65 >65	1	6.6	1.0-267.2

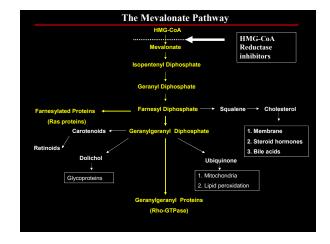
Infection:

- Infectious burden may be associated with long-term stroke risk
- Acute infections are likely associated with near-term stroke risk (i.e., stroke trigger)
- Influenza vaccination can reduce risk of stroke/vascular disease

AHA/JACC Guidelines

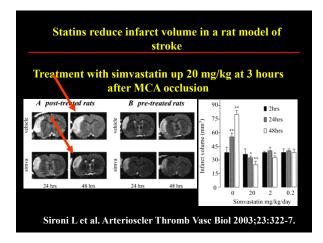

 Recognition of this fact could have implications for management of patients presenting with infectious disorders, though this remains to be determined

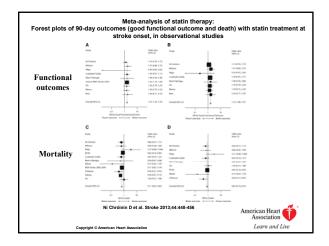

Infection: Potential trials in prevention


- 1. Flu vaccination to prevent stroke (primary/secondary)
- Identification of patients at increased LONG-TERM stroke risk due to infectious burden or related markers for drug therapy
 Antibiotics
 - b. Anti-inflammatories
- 3. Identification of patients at increased NEAR-TERM stroke risk due to acute or recent infection (URI, flu, UTI, etc) and treat with vascular protective agent (ASA, statins, etc)

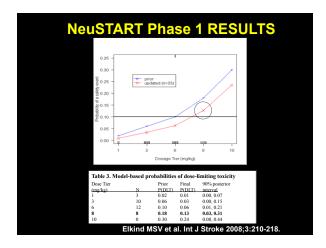
Outline

- Inflammatory markers and stroke risk
- Infectious markers and stroke risk
- · Acute infection and stroke risk
- Acute stroke: Anti-inflammatory treatments
 - Statins
 - Natalizumab



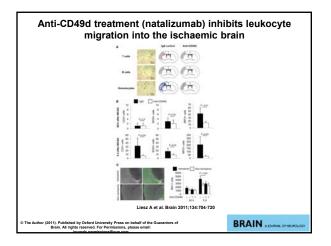

Cholesterol-Independent Effects of the Statins

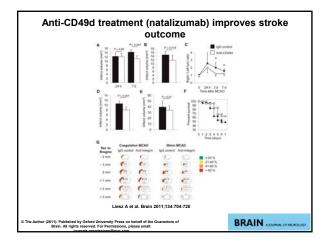
- Upregulation of endothelial NOS Improves vascular reactivity Increased coronary and cerebral blood flow
- Anti-inflammatory
 - Lowers CRP and LpPLA2
 - Inhibits macrophage adhesion and diapedesis
- Reduction in free radicals
- Decreased platelet activation, thrombus formation
- Increased fibrinolysis
- Increased angiogenesis


Neuroprotection

NeuSTART Phase 2

Objectives:


- Primary Aim: To determine whether lovastatin 640 mg daily for 3 days beginning within 24 hours after acute stroke can be administered safely (<10 percentage points higher risk of myotoxicity and/or hepatotoxicity).
- Secondary Aim: To assess efficacy of lovastatin administered at high doses.


Natalizumab: exploring its potential in acute ischemic stroke

- Natalizumab (BG00002) is a recombinant humanized monoclonal
- antibody Blocks α4β1-integrin-mediated adhesion of leukocytes to vascular endothelial
- cells
- Inhibits transmigration of leukocytes into inflamed parenchymal tissue
- Well-characterized safety profile and established efficacy in relapsing multiple sclerosis and Crohn's disease1 Low risk of developing progressive multifocal leukoencephalopathy (PML) from
- a single dose
- Antibodies targeting a4 reduce infarct volume and improve functional outcomes vs placebo in animal models2
- Models of inflammation in stroke indicate an approx 6-hour time window is relevant for natalizumab action3
- Rudick RA, Panzara MA. Biologics 2008;2(2):189-199. Becker K, et al. *Stroke*. 2001;32(1):206-211. Lynch JR, et al. *Stroke*. 2004;35(1):57-63.
- 2. 3.

12

72

What is the ACTION Study?

- Double-blind, randomized, phase II study to assess the efficacy and safety of intravenous natalizumab in reducing infarct volume in acute ischemic stroke
- · Randomizing 200 patients with acute ischemic stroke
- · Approximately 50 sites in the US and Europe

Primary objective: To determine whether one 300 mg dose of intravenous (IV) natalizumab reduces change in infarct volume from Baseline to Day 5 on magnetic resonance imaging (MRI) in patients with acute ischemic stroke when given at ≤6 hours or at >6 to ≤9 hours from when they were last known normal (LKN).

Alberto Canaan Dave Hunt

BWH: Steve Feske, Sarah Clarke Mount Sinai: Mandip Dhamoon, Emma Karlin Univ Miami: Jose Romano, Iszet Campo-Bustillo UCLA: Sid Starkman, judy Guzy

