

Tenecteplase: Ready for prime time?

Implications for non-TNK clinical trials

Steven Warach, MD, PhD

Dell Medical School, University of Texas at Austin Ascension Healthcare Austin, Texas

Disclosures

Off label use of drugs

Intravenous alteplase for ischemic stroke beyond 3 hours Intravenous tenecteplase for ischemic stroke

Financial Modest: Genentech

The New England Journal of Medicine

©Copyright, 1995, by the Massachusetts Medical Society

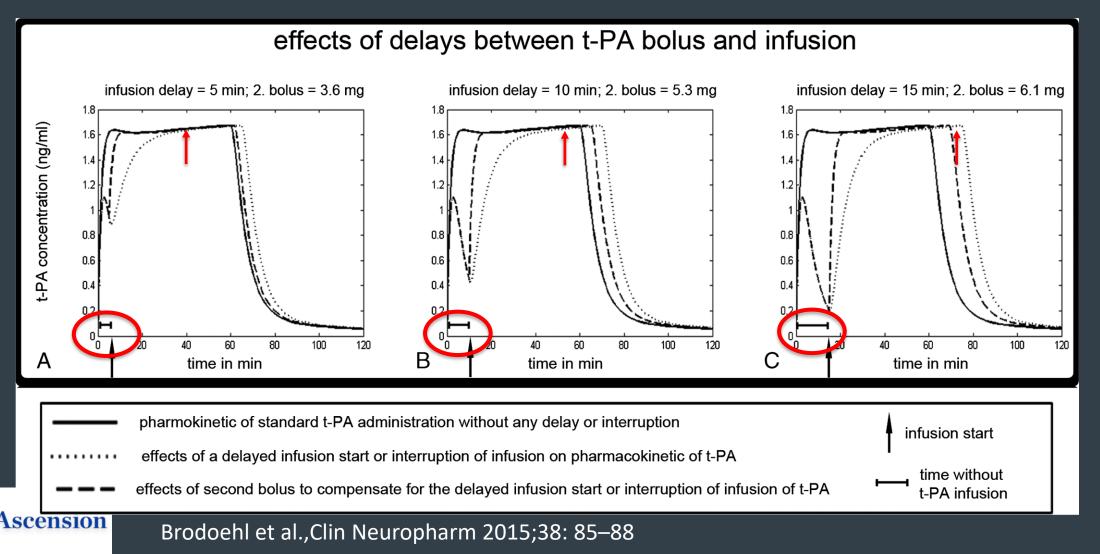
	EMBER 14, 1995		Number 24	
TISSUE PLASMINOGEN ACTI	vator for acute alteplase	iscнемic stro placebo	ке р	Can we
Disability-free recovery (mRS ≤ 1)	43%	27%	< .001	do better?
Symptomatic intracerebral hemorrhage	6.4%	0.6%	< .001	

Health Ecosystem

Alteplase administration: bolus then infusion

Phase	Alteplase
Initial (free plasma)	3-5 min
Plasma Clearance	380-570 mL/min
Terminal (tissue bound)	72-144 min

scension


<u>Stroke Dosing</u>0.9 mg/kg Max 90mg10% as 60 sec bolusremainder as infusion over 60 minutes

Alteplase administration: *mind the gap!*

Alteplase administration: *mind the gap!*

Bolus-Infusion Delays of Alteplase during Thrombolysis in Acute Ischaemic Stroke and Functional Outcome at 3 Months. *Acheampong et al. 2014, Stroke Res Treat*

> N=276 alteplase treated stoke Mean bolus to infusion delay of 9 minutes

> > 80% >= 5 minutes 22% >=12 minutes

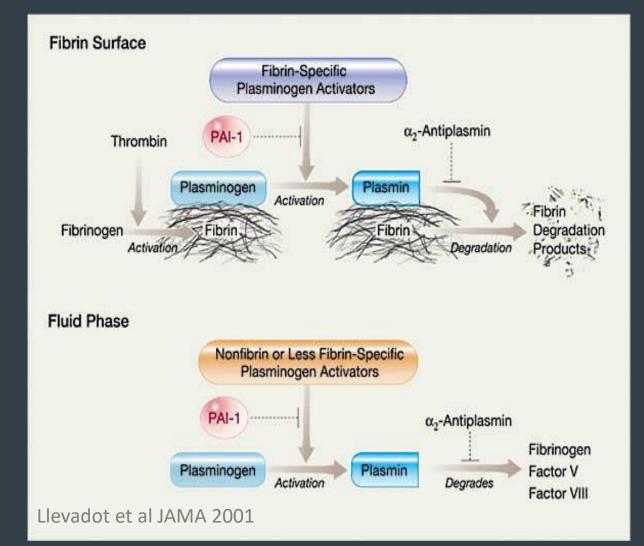
Trend to worse mRS outcome with longer bolus to infusion delays

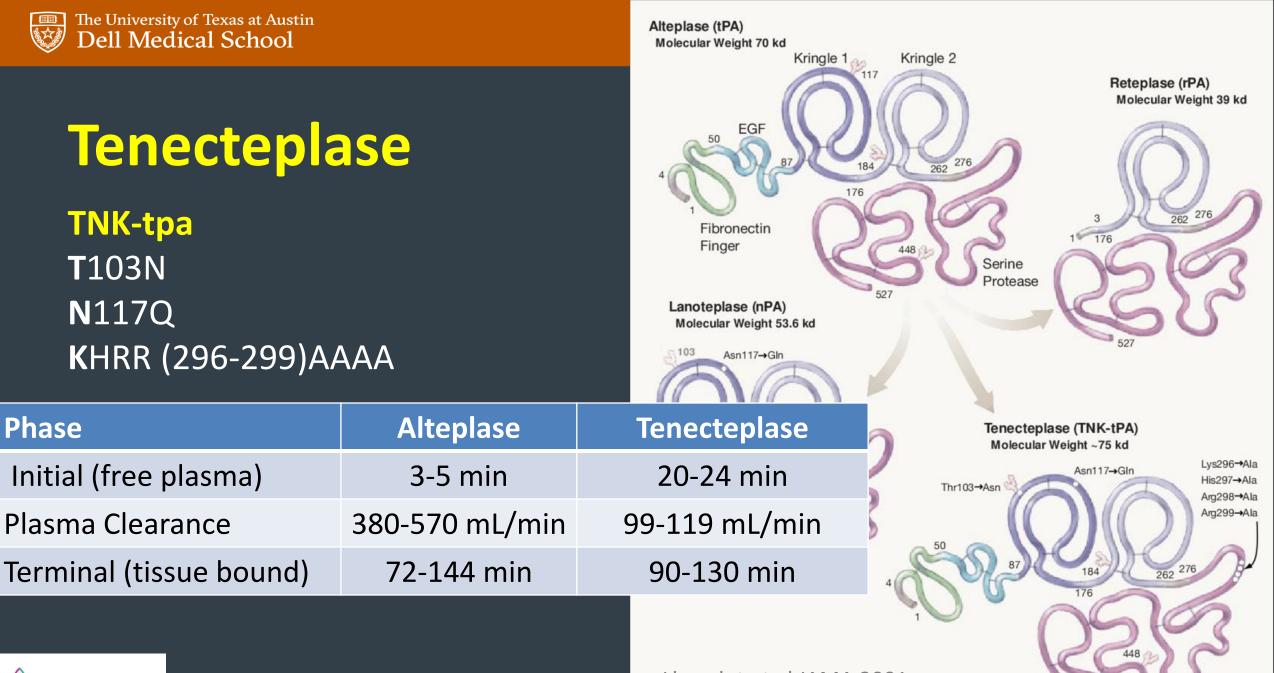
Search for a better thrombolytic

Single bolus injection – workflow advantages

Higher rates of recanalization – better outcomes

Reduced bleeding complication – better safety

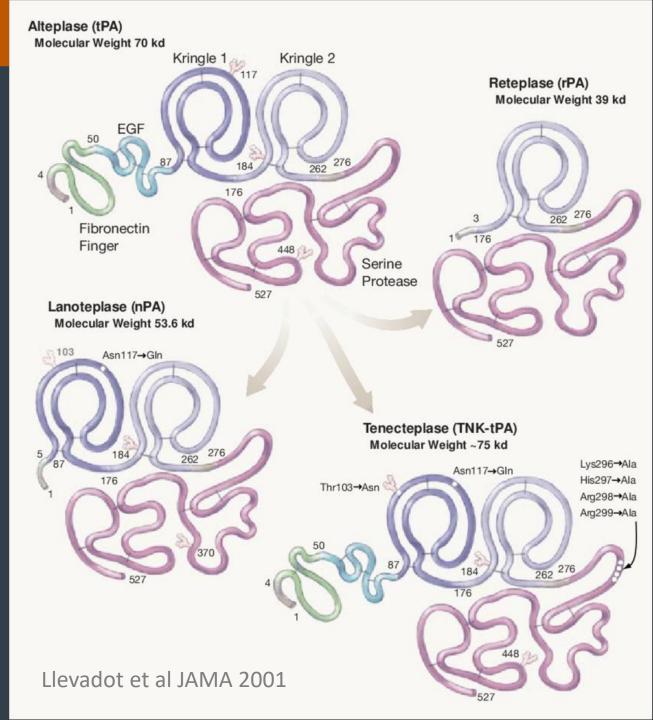



Search for a better thrombolytic

<u>Greater</u> fibrin specificity resistance to PAI-1 inhibition conservation of fibrinogen speed of clot lysis

<u>Reduced</u> plasma clearance

Ascension

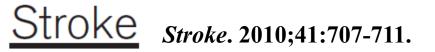

Llevadot et al JAMA 2001

Tenecteplase

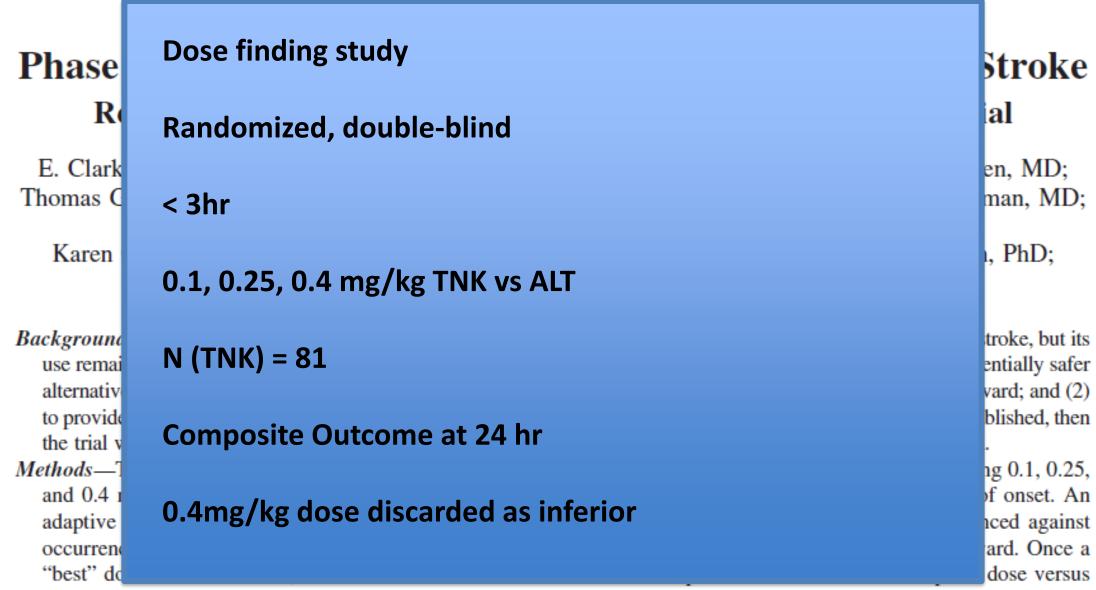
TNK-tpa T103N **N**117Q KHRR (296-299)AAAA

14-fold greater fibrin specificity10-fold greater conservation of fibrinogen80-fold increased resistance to PAI-1more rapid thrombolysis

ASSENT-2 (1999)


- Alteplase vs Tenecteplase in STEMI; ~8500 per group
- Equivalent 30-day morality
- 0.9% ICH both groups
- Fewer non-CNS bleeding events (26% to 29%)
- No difference in recanalization or reinfarction
- FDA approved in 2000 at <u>0.5 mg/kg to 50 mg maximum</u>

Alteplase vs Tenecteplase randomized trials 2010-2019

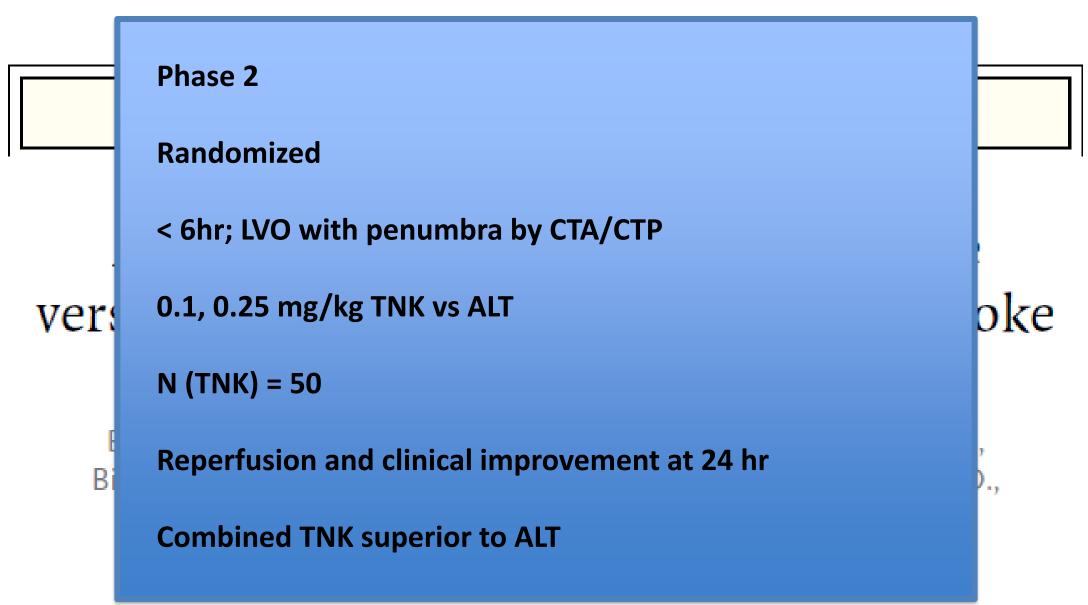

Phase IIB/III Trial of Tenecteplase in Acute Ischemic Stroke Results of a Prematurely Terminated Randomized Clinical Trial

E. Clarke Haley, Jr, MD; John L.P. Thompson, PhD; James C. Grotta, MD; Patrick D. Lyden, MD; Thomas G. Hemmen, MD; Devin L. Brown, MD, MS; Christopher Fanale, MD; Richard Libman, MD; Thomas G. Kwiatkowski, MD; Rafael H. Llinas, MD; Steven R. Levine, MD; Karen C. Johnston, MD, MSc; Richard Buchsbaum; Gilberto Levy, MD, MS; Bruce Levin, PhD; for the Tenecteplase in Stroke Investigators

Background and Purpose—Intravenous alteplase (rtPA) remains the only approved treatment for acute ischemic stroke, but its use remains limited. In a previous pilot dose-escalation study, intravenous tenecteplase showed promise as a potentially safer alternative. Therefore, a Phase IIB clinical trial was begun to (1) choose a best dose of tenecteplase to carry forward; and (2) to provide evidence for either promise or futility of further testing of tenecteplase versus rtPA. If promise was established, then the trial would continue as a Phase III efficacy trial comparing the selected tenecteplase dose to standard rtPA.

Methods—The trial began as a small, multicenter, randomized, double-blind, controlled clinical trial comparing 0.1, 0.25, and 0.4 mg/kg tenecteplase with standard 0.9 mg/kg rtPA in patients with acute stroke within 3 hours of onset. An adaptive sequential design used an early (24-hour) assessment of major neurological improvement balanced against occurrence of symptomatic intracranial hemorrhage to choose a "best" dose of tenecteplase to carry forward. Once a "best" dose was established, the trial was to continue until at least 100 pairs of the selected tenecteplase dose versus standard rtPA could be compared by 3-month outcome using the modified Rankin Scale in an interim analysis. Decision

Stroke Stroke. 2010;41:707-711.


standard rtPA could be compared by 3-month outcome using the modified Rankin Scale in an interim analysis. Decision

ORIGINAL ARTICLE

A Randomized Trial of Tenecteplase versus Alteplase for Acute Ischemic Stroke

Mark Parsons, M.D., Neil Spratt, M.D., Andrew Bivard, B.Sc., Bruce Campbell, M.D., Kong Chung, M.D., Ferdinand Miteff, M.D., Bill O'Brien, M.D., Christopher Bladin, M.D., Patrick McElduff, Ph.D., Chris Allen, M.D., Grant Bateman, M.D., Geoffrey Donnan, M.D., Stephen Davis, M.D., and Christopher Levi, M.D.

The NEW ENGLAND JOURNAL of MEDICINE

Alteplase versus tenecteplase for thrombolysis after ischaemic stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study

Xuya Huang, Bharath Kumar Cheripelli, Suzanne M Lloyd, Dheeraj Kalladka, Fiona Catherine Moreton, Aslam Siddiqui, Ian Ford, Keith W Muir

Summary

Lancet Neurol 2015; 14: 368-76

Published Online February 26, 2015 http://dx.doi.org/10.1016/ S1474-4422(15)70017-7 See Comment page 343

Institute of Neuroscience and

Background In most countries, alteplase given within 4.5 h of onset is the only approved medical treatment for acute ischaemic stroke. The newer thrombolytic drug tenecteplase has been investigated in one randomised trial up to 3 h after stroke and in another trial up to 6 h after stroke in patients selected by advanced neuroimaging. In the Alteplase-Tenecteplase Trial Evaluation for Stroke Thrombolysis (ATTEST), we aimed to assess the efficacy and safety of tenecteplase versus alteplase within 4.5 h of stroke onset in a population not selected on the basis of advanced neuroimaging, and to use imaging biomarkers to inform the design of a definitive phase 3 clinical trial.

ter

٦,

Phase 2

Randomized, PROBE

< 4.5 hr; with penumbra by CTA/CTP

0.25mg/kg TNK vs ALT

Lancet Neurol 2015; 14: 368–76

Published Online February 26, 2015 http://dx.doi.org/10.1016/ S1474-4422(15)70017-7 See Comment page 343 Institute of Neuroscience and

scension

Penumbral Salvage at 24-48 hr

No differences

Ian Ford, Keith W Muir cal treatment for acute domised trial up to 3 h Iging. In the Alteplase-

iging. In the Alteplaseefficacy and safety of the basis of advanced nical trial.

Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial

Nicola Logallo, Vojtech Novotny, Jörg Assmus, Christopher E Kvistad, Lars Alteheld, Ole Morten Rønning, Bente Thommessen, Karl-Friedrich Amthor, Hege Ihle-Hansen, Martin Kurz, Håkon Tobro, Kamaljit Kaur, Magdalena Stankiewicz, Maria Carlsson, Åse Morsund, Titto Idicula, Anne Hege Aamodt, Christian Lund, Halvor Næss, Ulrike Waje-Andreassen, Lars Thomassen

Summary

Background Tenecteplase is a newer thrombolytic agent with some pharmacological advantages over alteplase. Previous phase 2 trials of tenecteplase in acute ischaemic stroke have shown promising results. We aimed to investigate the safety and efficacy of tenecteplase versus alteplase in patients with acute stroke who were eligible for intravenous thrombolysis.

Methods This phase 3, randomised, open-label, blinded endpoint, superiority trial was done in 13 stroke units in Norway. We enrolled adults with suspected acute ischaemic stroke who were eligible for thrombolysis and admitted within 4.5 h of symptom onset or within 4.5 h of awakening with symptoms, or who were eligible for bridging therapy before thrombectomy. Patients were randomly assigned (1:1) to receive intravenous tenecteplase 0.4 mg/kg (to a maximum of 40 mg) or alteplase 0.9 mg/kg (to a maximum of 90 mg), via a block randomisation schedule stratified by centre of inclusion. Patients were not informed of treatment allocation; treating physicians were aware of treatment allocation but those assessing the primary and secondary endpoints were not. The primary outcome was excellent functional outcome defined as modified Rankin Scale (mRS) score 0–1 at 3 months. The primary analysis was an unadjusted and non-stratified intention-to-treat analysis with last observation carried forward for imputation of missing data. This study is registered with ClinicalTrials.gov, number NCT01949948.

Findings Between Sept 1, 2012, and Sept 30, 2016, 1107 patients met the inclusion criteria and seven patients were excluded because informed consent was withdrawn or eligibility for thrombolytic treatment was reconsidered. 1100 patients were randomly assigned to the tenecteplase (n=549) or alteplase (n=551) groups. The median age of participants was 77 years (IOR 64–79) and the median National Institutes of Health Stroke Scale score at baseline

Lancet Neurol 2017; 16: 781–88 Published Online August 2, 2017 http://dx.doi.org/10.1016/ S1474-4422(17)30253-3

See Comment page 762

Department of Neurology, Centre for Neurovascular Diseases (N Logallo PhD, V Novotny MD, C E Kvistad PhD, Prof H Næss PhD, U Waje-Andreassen PhD, Prof L Thomassen PhD) and **Centre for Clinical Research** (J Assmus PhD), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway (N Logallo, V Novotny, C E Kvistad, Prof M Kurz PhD, U Waje-Andreassen, Prof L Thomassen); Department of Neurology, Oslo University

	cteplase versus alteplase for management of acute	
iscł ope	Phase 3	
Nicola L Karl-Frie Titto Idio	Randomized, PROBE	
<mark>Sumn</mark> Backgr Previo	< 4.5 hr (+ Wake-up), all eligible for thrombolytic	rol 2017; 16: 781–88)nline
investi intrave	0.4 mg/kg TNK vs ALT	017 pl.org/10.1016/ 2(17)30253-3 ent page 762
Metho Norwa within therap (to a n	N (TNK) = 549	nt of Neurology, Neurovascular I Logallo PhD, MD, C E Kvistad PhD, s PhD,
stratifi treatm excelle	mRS at 3 months	treassen PhD, nassen PhD) and Clinical Research hD), Haukeland Hospital, Bergen,
was an of miss Findin exclud	No differences mRS or sICH	epartment of Clinical Jniversity of Bergen, prway (N Logallo, C E Kvistad, PhD, LUWaie, Andreassen

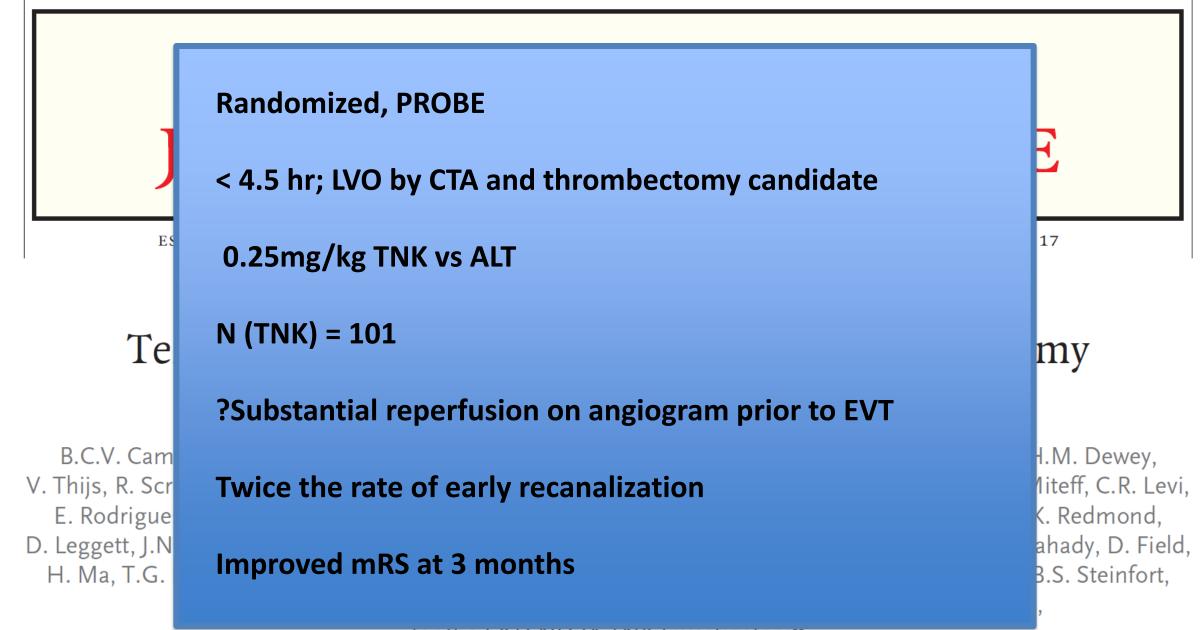
Ascen

1100 patients were randomly assigned to the tenecteplase (n=549) or alteplase (n=551) groups. The median age of participants was 77 years (IOR 64–79) and the median National Institutes of Health Stroke Scale score at baseline of Neurology Oslo University

Prof L Thomassen); Department

Tene	cteplase versus alteplase for management of acute 🍡 🌖	@ (
iscł ope	Phase 3	Crossimark
Nicola L Karl-Frie Titto Idio	Randomized, PROBE	
Sumn Backgr Previo	< 4.5 hr (+ Wake-up), all eligible for thrombolytic	rol 2017; 16: 781–88)nline
investi intrave Metho	0.4 mg/kg TNK vs ALT	017 pi.org/10.1016/ 2(17)30253-3 ent page 762
Norwa within therap (to a n	Median NIHSS 4	It of Neurology, Neurovascular I Logallo PhD, MD, C E Kvistad PhD, s PhD, Ireassen PhD,
stratifi treatm excelle was an	Severe (NIHSS ≥ 15) subgroup higher mortality in TNK group	hassen PhD, hassen PhD) and Clinical Research hD), Haukeland Hospital, Bergen, epartment of Clinical
of miss Findin exclud	Points were randomly assigned to the tenecteplase (n=549) or alteplase (n=551) groups. The median age of $\frac{UWaje-A}{a}$	Jniversity of Bergen, wway (N Logallo, C E Kvistad, PhD, Andreassen,

Ascen


1100 patients were randomly assigned to the tenecteplase (n=549) or alteplase (n=551) groups. The median age of participants was 77 years (IOR 64–79) and the median National Institutes of Health Stroke Scale score at baseline of Neurology Oslo University

Prof L Thomassen); Department

Tenecteplase versus Alteplase before Thrombectomy for Ischemic Stroke

B.C.V. Campbell, P.J. Mitchell, L. Churilov, N. Yassi, T.J. Kleinig, R.J. Dowling, B. Yan, S.J. Bush, H.M. Dewey,
V. Thijs, R. Scroop, M. Simpson, M. Brooks, H. Asadi, T.Y. Wu, D.G. Shah, T. Wijeratne, T. Ang, F. Miteff, C.R. Levi,
E. Rodrigues, H. Zhao, P. Salvaris, C. Garcia-Esperon, P. Bailey, H. Rice, L. de Villiers, H. Brown, K. Redmond,
D. Leggett, J.N. Fink, W. Collecutt, A.A. Wong, C. Muller, A. Coulthard, K. Mitchell, J. Clouston, K. Mahady, D. Field,
H. Ma, T.G. Phan, W. Chong, R.V. Chandra, L.-A. Slater, M. Krause, T.J. Harrington, K.C. Faulder, B.S. Steinfort,
C.F. Bladin, G. Sharma, P.M. Desmond, M.W. Parsons, G.A. Donnan, and S.M. Davis,
for the EXTEND-IA TNK Investigators*

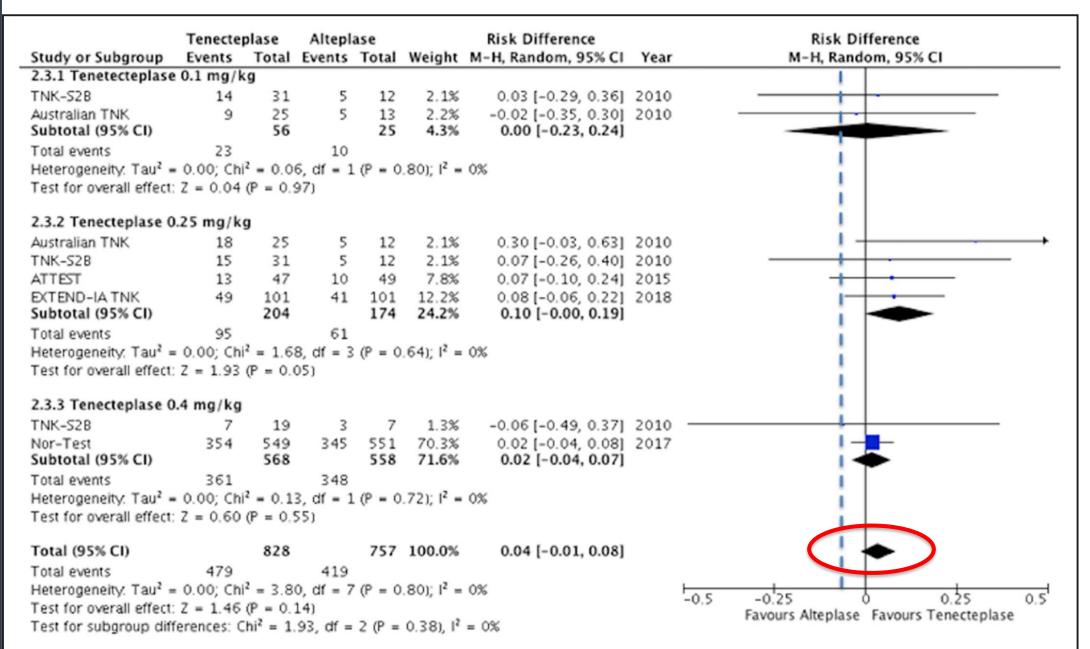
for the EXTEND-IA TINK Investigators*

Table 2. Outcomes.						
Outcome	Tenecteplase Group (N=101)	Alteplase Group (N=101)	Effect Size (95% CI)	P Value		
Primary efficacy outcome						
Substantial reperfusion at initial angiographic assessment — no. (%)*	22 (22)	10 (10)				
Difference — percentage points			12 (2–21)	0.002		
Adjusted incidence ratio			2.2 (1.1-4.4)	0.03		
Adjusted odds ratio			2.6 (1.1–5.9)	0.02		
Secondary outcomes						
Score on the modified Rankin scale at 90 days†						

Campbell BCV et al. N Engl J Med 2018;378:1573-1582

Tenecteplase as Stroke Thrombolytic *meta-analyses*

Non-inferiority and possible superiority of tenecteplase v alteplase in the treatment of acute ischemic stroke Kheiri et al., *Journal of Thrombosis and Thrombolysis* (2018) Burgos and Saver, *Stroke* (2019)


rstem

Study or Subgroup	Tenectep Events		Altepla		Moinht	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
	the second se	Total	Events	Total	weight	M-H, Rahuom, 95% Ci	M-H, Kalluolli, 95% Cl
1.1.1 Complete recanal					~~~~	1 70 10 75 1 00	
EXTEND-IA TNK 2018	16	97	10	99	60.3%		
Parsons 2012	28	48	8	22	39.7%		
Subtotal (95% CI)		145		121	100.0%	2.01 [1.04, 3.87]	
Total events	44		18				
Heterogeneity: Tau ² = 0.			= 1 (P = ().63); I*	= 0%		
Test for overall effect: Z	= 2.08 (P =	0.04)	ノ				
4.4.2 Complete hartial		~					
1.1.2 Complete/partial I				0.5	00.00	0.00.00.00.000	
ATTEST 2015	21	32	26	35	29.6%	0.66 [0.23, 1.89]	
EXTEND-IA TNK 2018	33	97	23	99	45.9%		
Parsons 2012	42	48	15	22		3.27 [0.95, 11.28]	
Subtotal (95% CI)		177		156	100.0%	1.51 [0.70, 3.26]	
Total events	96		64		11 11212 1220		
Heterogeneity: Tau ² = 0.			= 2 (P = 0).14); I²	= 50%		
Test for overall effect: Z	= 1.04 (P =	0.30)					
1125-							
1.1.3 Early neurologica	1 improvem	em	4.0				
ATTEST 2015		47	12	49	12.7%		
EXTEND-IA TNK 2018	72	101	69	101	21.7%		
Haley 2010	22	81	5	31	9.1%	1.94 [0.66, 5.68]	1 N N
NOR-TEST 2017	229	549	214	551	46.3%	1.13 [0.89, 1.43]	-
Parsons 2012	32	50	9	25	10.2%	3.16 [1.16, 8.59]	
Subtotal (95% CI)		828		757	100.0%	1.43 [1.01, 2.03]	-
Total events	374		309				
			= 4 (P = 0				

Burgos and Saver Non-inferior 3 month mRS 0-1

vstem

Tenecteplase practical advantages over alteplase

Shorter time to prepare

Shorter time to administer (5-10 seconds versus 1 hour)

Does not require that a second, dedicated IV line be inserted and maintained Does not require an IV infusion pump

Shorter time to initiate interfacility transfer after IV lytic administration*

Lower cost per dose

Tenecteplase As Stroke Thrombolytic Transitioning to Local Standard of Care at Ascension Seton Ascension Texas – Ascension Seton Stroke Service. 10 hospitals (2 CSC, 2 PSC) Unchanged lytic eligibility criteria and post treatment monitoring early drug preparation not permitted for tenecteplase Nursing and physician education Electronic medical record revision of ordersets and monitoring tools Network 'Go-Live' September 17, 2019

Quarterly oversight review of cumulative outcome and safety data

Prospective Observational Cohort Study of Tenecteplase Versus Alteplase in Routine Clinical Practice

<u>Purpose</u> To compare workflow metrics clinical outcomes of IV tenecteplase as standard of care lytic with that of alteplase

<u>Data Source</u> Local Stroke Registry (REDCap). 2 years of alteplase prior to switch to tenecteplase compared to first 15 months of tenecteplase

Hypotheses

Reduced door-to-needle and door-in-door-out times (higher rate of hitting target times) Noninferior favorable outcome (discharge to home with independent ambulation) Noninferior unfavorable outcome (sICH, in-hospital mortality or discharge to hospice)

Baseline Characteristics

	Alteplase	Tenecteplase
N	354	234
Age (median, IQR)	67 (55-79)	68 (57-77)
NIHSS (median, IQR)	8 (4-15)	8 (4-13)
% men	52%	62%
% EVT after lytic	22%	24%

Door to Needle time no exclusions

	Alteplase	Tenecteplase	
Ν	354	234	
Minutes (median, IQR)	57 (43-75)	51 (38-80)	<mark>P=0.140</mark>
% <= 45 min	29%	41%	<mark>P=0.006</mark>

aOR 1.76 (1.24, 2.52), P=.002

Door to Needle time GWTG defined

	Alteplase	Tenecteplase	
Ν	203	135	
Minutes (median, IQR)	48 (39-59)	42 (35-53)	<mark>P=0.012</mark>
% <= 45 min	41%	56%	<mark>P=0.011</mark>

Interfacility Transfer Time After Lytic

	Alteplase	Tenecteplase	
N	65	43	
Minutes (median)	135	113	<mark>P=0.054</mark>
% <= 90 Min	14%	37%	<mark>P=0.010</mark>

OR = 3.69 (1.47, 9.7), *P*=.006

Interfacility Transfer Time no Lytic

	Alteplase Era	Tenecteplase Era
Ν	278	205
Minutes (median)	158.5	165
% <= 90 Min	22%	18%

Interfacility Transfer Time After Lytic for EVT

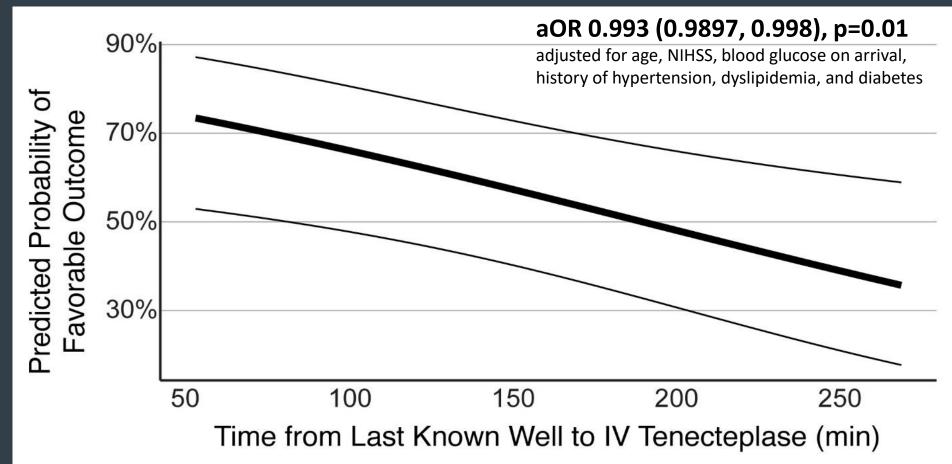
	Alteplase	Tenecteplase	
N	13	16	
Minutes (median)	108	83	<mark>P=0.06</mark>
% <= 90 Min	15%	62%	<mark>P=0.03</mark>

<mark>NS</mark>

Interfacility Transfer Time *no Lytic* for EVT

	Alteplase Era	Tenecteplase Era
N	20	18
Minutes (median)	100.5	86.5
% <= 90 Min	40%	61%

Favorable Outcome at Discharge


	Alteplase	Tenecteplase
Ν	354	234
Independent ambulation	43%	48%
Discharge to home	52%	52%
Discharge to home AND Independent Ambulation	39%	44%

aOR 1.26 (0.89, 1.80) within 6.5% non-inferiority margin

Favorable Outcome at Discharge

declines with onset to treatment time

Unfavorable Outcomes

	Alteplase	Tenecteplase
Ν	354	234
Any PH, IVH, or SAH by 36 hours	7.9%	7.7%
Symptomatic ICH	2.8 %	1.7%
In Hospital Mortality	6.2%	4.3%
Mortality OR Hospice	10.5%	6.8%
Death, Hospice, OR sxICH	11.9%	7.7%

aOR 0.77 (0.42, 1.37) not within 1% non-inferiority margin

P=0.02

Net Favorable Outcomes

NET FAVORABLE OUTCOME	Alteplase	Tenecteplase
Favorable minus Unfavorable Outcomes	27%	37%

P< 0.001

Hospital Costs per Encounter

	Table 1. Hospital Cost Breakdown: Tenecteplase vs Alteplase					
		ALT, N	= 354	TNK, N = 234	p-value	
	Diagnostic	16 (16	, 127)	32 (16, 127)	0.4	
	Imaging	723 (507	7, 1,031)	834 (533, 1,143)	0.044	
	Lab	224 (14	2, 487)	259 (164, 512)	0.035	
	Pharmacy	9,288 (8,65	57, 11,751) 6	5,997 (6,460, 7,972)	< 0.001	
	Service Line	117 (10	5, 236)	120 (105, 242)	0.7	
	Supplies Devices	6 (0,	702)	12 (0, 2,758)	0.2	
	Ancillary Services	446 (23	5, 773)	514 (295 <i>,</i> 882)	0.036	
	Room Board	3,110 (2,1	07, 5,009) 3	3,110 (2,107, 4,665)	0.5	
	Operative Services	0 (0,	983)	0 (0, 1,247)	0.3	
Hospital Costs	by Thrombolytic Type Used		Alteplase	Tenecteplase	Savi	ings per case with TNI
Overall Hos	pital Cost per Encounter		\$15,841	\$13,382		\$2,459

Approximate \$450,000 savings in hospital costs annually at Ascension Texas Hospitals

Ascension Texas Tenecteplase 15 months' experience

Limitations

Single Stroke Network

Non-randomized

Not blinded

Sequential Samples (temporal trends in quality improvement may contribute)

Ascension Texas Tenecteplase 15 months' experience

Statistically significant:

Reduction in time from ED arrival to treatment Increased % cases treated within 45 minutes of arrival Reduced transfer times (DIDO) Reduced time to EVT when transferred after lytic Non-inferior favorable clinical outcomes at discharge

Fewer unfavorable outcomes at discharge

Pharmacy cost savings over one year ~\$450,000

Our results are comparable to published NZ experience

Experience in Clinical Practice

BRIEF REPORT

Routine Use of Tenecteplase for Thrombolysis in Acute Ischemic Stroke

Cathy S. Zhong^(D), MBChB*; James Beharry^(D), MBChB*; Daniel Salazar, MD; Kelly Smith, BN; Stephen Withington, MBChB; Bruce C.V. Campbell^(D), MBBS, PhD; Duncan Wilson, MRCP, PhD; Campbell Le Heron, MBChB, PhD; Deborah Mason, MBChB; Roderick Duncan, MD, PhD; Jon Reimers, MBBS; Frances Mein-Smith, MBChB; William K. Diprose^(D), MBChB; P. Alan Barber, MBChB, PhD; Annemarei Ranta^(D), MD, PhD; John N. Fink, MBChB; Teddy Y. Wu^(D), MBChB, PhD

BACKGROUND AND PURPOSE: In ischemic stroke, intravenous tenecteplase is noninferior to alteplase in selected patients and has some practical advantages. Several stroke centers in New Zealand changed to routine off-label intravenous tenecteplase due to improved early recanalization in large vessel occlusion, inconsistent access to thrombectomy within stroke networks, and for consistency in treatment protocols between patients with and without large vessel occlusion. We report the feasibility and safety outcomes in tenecteplase-treated patients.

Table. Demographics, Stroke Reperfusion Metrics, and Outcome

KEAHA.120.030859

BRIEF REPORT

Routine Us Acute Ische

Cathy S. Zhong^(D), MBChB*; Bruce C.V. Campbell^(D), MBB Roderick Duncan, MD, PhD; P. Alan Barber, MBChB, PhD;

BACKGROUND AND PURPOSE: In

has some practical advantage due to improved early recan and for consistency in treatr and safety outcomes in tene

	Tenecteplase (n=165)	Alteplase (n=254)	<i>P</i> value
Male	93 (56%)	152 (60%)	0.48
Age, y	75 (64-84)	74 (62-83)	0.50
Onset-to-needle time, min	130 <mark>(</mark> 97–183)	129 (100-175)	0.72
Door-to-needle time, min	47 (33-69)	48 (33-66)	0.93
Baseline NIHSS	8 (5-14)	10 (5-17)*	0.17
Large vessel occlusion	87 (53%)	118(46%)	0.21
Endovascular thrombec- tomy	<mark>61 (</mark> 37%)	61 (24%)	0.004
Angioedema	4 (2.4% [95% Cl, 0.7%-6.2%])	1 (0.4% [95% Cl, 0.01%-2.2%])	0.08†
Symptomatic intracere- bral hemorrhage	3 (1.8% [95% Cl, 0.4%-5.3%])	7 (2.7% [95% Cl, 1.1%-5.7%])	0.75†
90-day functional Inde- pendence ‡	100 (61%)	140 (57%)	0.47

sis in

i, MBChB; ason, MBChB;

ed patients and us tenecteplase troke networks, ort the feasibility

BRIEF REPORT

Switching to Tenecteplase for Stroke Thrombolysis

Real-World Experience and Outcomes in a Regional Stroke Network

Karim Mahawish[®], MBChB; John Gommans[®], MBChB; Timothy Kleinig, PhD; Bhavesh Lallu[®], MBChB; Alicia Tyson[®], BNurs PGdip; Annemarei Ranta[®], MD, PhD

BACKGROUND AND PURPOSE: Due to practical advantages, increasing trial safety data, recent Australian Guideline endorsement and local population needs we switched to tenecteplase for stroke thrombolysis from alteplase. We describe our change process and real-world outcome data.

METHODS: Mixed-methods including stakeholder engagement, preimplementation and postimplementation surveys, and assessment of patient treatment rates, metrics, and clinical outcomes preimplementation and postimplementation adjusting

Table 2. Patient Outcomes

		Tenecteplas	se	Alteplase				aOR		
		N=283		N=555		OR		Model	1*	
Dea	ath by day 7	21/283 (7.4	%)	62/555 (1	1.2%)	0.64 (0.3	8–1.07)	0.46 (0	0.21–0.99)	
slC	H	5/283 (1.8%	⁄o)	19/555 (3	.4%)	0.51 (0.1	9–1.39)	0.46 (0	0.13–1.64)	
Ang	gioedema	2/283 (0.71	%)	4/551 (0.7	2%)	0.98 (0.1	78–5.39)	1.40 (0	0.59–33.59)
3-m	nonth mRS score (0–2)§	147/231 (6:	3.6%)	282/478 (60.0%)	1.24 (0.9	0–1.71)	2.17 (1	1.31–3.59)	
3-m	nonth mRS (shift analysis)§					1.23 (0.9	3–1.63)	1.60 (1	1.15–2.22)	
	Table 3. Time Metrics Acros	ss Multiple	Time Poi	nts (Media	ans [IQR])					Г
Ka	Year group		Tenectepl	ase	Alteplase				P value	
Alic	Door-to-needle time									
	Tenecteplase vs alteplase all prid	or years	53 (38–73	.5)	61 (45–86)		0.0002			
BAC	Tenecteplase vs alteplase 2019		53 (38–73	9.5)	63.5 (48–95)		0.01	ent		
and pro	Alteplase 2018 vs 2019			60 (43-82) 63.5 (48-95)		0.052	ige			
	Needle-to-groin time									
ME as:	Tenecteplase vs alteplase all pric	or years	159 (124.	4.5–258.5) 200 (174–255)			0.69	ind		

Comparative Effectiveness Of Routine Tenecteplase Thrombolysis In Acute Stroke Compared With Alteplase An International

CERTAIN Collaboration

Multinational pooling of patient level data

Hospitals or networks that use tenecteplase as stroke thrombolytic

Include alteplase cases from sources

Assess workflow and clinical outcomes of tenecteplase in large samples

First Project: symptomatic ICH (sICH)

CERTAIN ISC 2022

Baseline Features, Total Sample

	Alteplase N=7313	Tenecteplase N=1925	P-value
Age (median years, IQR)	70 (58 <i>,</i> 80)	73 (61, 81)	<0.001
Male (n <i>,</i> %)	3755 (51%)	1034 (55%)	0.007
NIHSS (median, IQR)	7 (4, 14)	9 (5, 17)	<0.001
Onset to needle (median minutes, IQR)	137 (98 <i>,</i> 194)	160 (107, 246)	<0.001
Large vessel occlusion (n, %)	1745 (24%)	918 (48%)	<0.001
Systolic blood pressure (median mmHg, IQR)	153 (133 <i>,</i> 176)	150 (130, 171)	<0.001
Glucose (median mmol/L, IQR)	6.6 (5.7 <i>,</i> 8.5)	6.7 (5.7 <i>,</i> 8.4)	0.365
Thrombectomy (n, %)	1465 (20%)	739 (38%)	<0.001

Tenecteplase group has greater baseline predictors of sICH

CERTAIN ISC 2022

Rate of sICH, Total Sample

	Alteplase N=7313	Tenecteplase N=1925	P-value
sICH (n, %)	264 (3.6%)	35 (1.8%)	<0.001

Logistic regression, Total sample

	Odds ratio (95% CI)	P-value	Ν
sICH unadjusted	0.49 (0.35, 0.71)	<0.001	9238
sICH adjusted*	0.42 (0.29, 0.61)	<0.001	8726

Alteplase is reference category vs tenecteplase

*Adjusted for age, sex, NIHSS, onset-to-needle time, thrombectomy

CERTAIN ISC 2022

Rate of sICH, no mechanical thrombectomy

	Alteplase N=5848	Tenecteplase N=1186	P-value
sICH (n, %)	175 (3.0%)	17 (1.4%)	0.003

Logistic regression, no mechanical thrombectomy

	Odds ratio (95% CI)	P-value	Ν
sICH unadjusted	0.47 (0.29, 0.78)	0.003	7034
sICH adjusted*	0.46 (0.28, 0.77)	0.003	6628

Alteplase is reference category vs tenecteplase

*Adjusted for age, sex, NIHSS, onset-to-needle time

CERTAIN ISC 2022

Baseline Features, mechanical thrombectomy

	Alteplase N=1465	Tenecteplase N=739	P-value
Age (median years, IQR)	70 (58, 80)	73 (62, 81)	<0.001
Male (n, %)	733 (50%)	408 (57%)	0.005
NIHSS (median, IQR)	15 (8, 21)	16 (9, 21)	0.229
Onset to needle (median minutes, IQR)	144 (97 <i>,</i> 233)	199 (126, 304)	<0.001
Systolic blood pressure (median mmHg, IQR)	145 (120 <i>,</i> 167)	145 (120 <i>,</i> 166)	0.749
Glucose (median mmol/L, IQR)	6.7 (5.8 <i>,</i> 8.5)	6.7 (5.8 <i>,</i> 8.3)	0.570

Tenecteplase group has greater baseline predictors of sICH

CERTAIN ISC 2022

Rate of sICH, mechanical thrombectomy

	Alteplase N=1465	Tenecteplase N=739	P-value
sICH (n, %)	89 (5.9%)	18 (2.4%)	<0.001

Logistic regression: *mechanical thrombectomy*

	Odds ratio (95% CI)	P-value	Ν
sICH unadjusted	0.39 (0.23, 0.65)	<0.001	2204
sICH adjusted*	0.40 (0.24, 0.68)	0.001	2098

Alteplase is reference category vs tenecteplase

*Adjusted for age, sex, NIHSS, onset-to-needle time

CERTAIN ISC 2022

Limitations

- Non-randomized
- Unblinded
- Variability in definition and recording of registry source data

• Large sample

• Multinational, multicenter

 Rates of sICH agree with those from randomized trials; results unlikely due to bias

Conclusions

- Incidence of symptomatic ICH in stroke patients treated with tenecteplase was half that of patients treated with alteplase
 - Overall and for both EVT and non-EVT subgroups
- Statistically significant differences that were not previously observed in smaller samples
- Supports tenecteplase safety in clinical practice, relative to alteplase

CERTAIN ISC 2022

Alteplase vs Tenecteplase randomized trials

Which Dose?

JAMA | Original Investigation

Effect of Intravenous Tenecteplase Dose on Cerebral Reperfusion Before Thrombectomy in Patients With Large Vessel Occlusion Ischemic Stroke The EXTEND-IA TNK Part 2 Randomized Clinical Trial

Bruce C. V. Campbell, PhD; Peter J. Mitchell, MMed; Leonid Churilov, PhD; Nawaf Yassi, PhD; Timothy J. Kleinig, PhD; Richard J. Dowling, MBBS; Bernard Yan, DMedSci; Steven J. Bush, MBBS; Vincent Thijs, PhD; Rebecca Scroop, MBBS; Marion Simpson, MBBS; Mark Brooks, MBBS; Hamed Asadi, MBBS; Teddy Y. Wu, PhD; Darshan G. Shah, MBBS; Tissa Wijeratne, MD; Henry Zhao, MBBS; Fana Alemseged, MD; Felix Ng, MBBS; Peter Bailey, MD; Henry Rice, MBBS; Laetitia de Villiers, MBBS; Helen M. Dewey, PhD; Philip M. C. Choi, MBChB; Helen Brown, MB BCh BAO; Kendal Redmond, MBBS; David Leggett, MBBS; John N. Fink, MBChB; Wayne Collecutt, MBBS; Thomas Kraemer, MD; Martin Krause, MD; Dennis Cordato, PhD; Deborah Field, MBBS; Henry Ma, PhD; Bill O'Brien, MBBS; Benjamin Clissold, MBBS; Ferdinand Miteff, MBBS; Anna Clissold, MBBS; Geoffrey C. Cloud, MBBS; Leslie E. Bolitho, MBBS; Luke Bonavia, MBBS; Arup Bhattacharya, MBBS; Alistair Wright, MBBS; Abul Mamun, MBBS; Fintan O'Rourke, MBBS; John Worthington, MBBS; Andrew A. Wong, PhD; Christopher R. Levi, MBBS; Christopher F. Bladin, MD; Gagan Sharma, MCA; Patricia M. Desmond, MD; Mark W. Parsons, PhD; Geoffrey A. Donnan, MD; Stephen M. Davis, MD; for the EXTEND-IA TNK Part 2 investigators

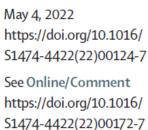
IMPORTANCE Intravenous thrombolysis with tenecteplase improves reperfusion prior to endovascular thrombectomy for ischemic stroke compared with alteplase.

OBJECTIVE To determine whether 0.40 mg/kg of tenecteplase safely improves reperfusion before endovascular thrombectomy vs 0.25 mg/kg of tenecteplase in patients with large vessel occlusion ischemic stroke.

Visual Abstract
 Supplemental content

JAMA | Original Investigation

etravonous Tonostonlaso Doso on Corobral Donorfusian Before Effect of I c Stroke Thrombe **Randomized** The EXTE LVO by CTA and thrombectomy candidate Bruce C. V. Campbe ling, MBBS; Bernard Yan, DMed BBS; TNK dose comparison: 0.25 vs 0.4 mg/kg Hamed Asadi, MBB lix Ng, MBBS; Peter Bailey, MD; H Ch BAO: Kendal Redmond, N e, MD; N(TNK) = 150 each groupDennis Cordato, Ph Anna Clissold, MBBS: Geoffrey C. Cloud, I hun, MBBS; Fintan O'Rourke, M gan Sharma, MCA; ? Substantial reperfusion on angiogram prior to EVT Patricia M. Desmon vestigators bstract No difference on reperfusion, sICH or mRS IMPORTANCE hental content endovascular No advantage to doses higher than 0.25 mg/kg **OBJECTIVE** To before endov vessel occlusion ischemic stroke.


Tenecteplase versus alteplase for the management of acute ischaemic stroke in Norway (NOR-TEST 2, part A): a phase 3, randomised, open-label, blinded endpoint, non-inferiority trial

Summary

Background Tenecteplase is a modified tissue plasminogen activator with pharmacological and practical advantages over alteplase—which is currently the only approved thrombolytic drug for ischaemic stroke. The NOR-TEST trial showed that 0.4 mg/kg tenecteplase had an efficacy and safety profile similar to that of a standard dose (0.9 mg/kg) of alteplase, albeit in a patient population with a high prevalence of minor stroke. The aim of NOR-TEST 2 was to establish the non-inferiority of tenecteplase 0.4 mg/kg to alteplase 0.9 mg/kg for patients with moderate or severe ischaemic stroke.

Methods This phase 3, randomised, open-label, blinded endpoint, non-inferiority trial was performed at 11 hospitals with stroke units in Norway. Patients with suspected acute ischaemic stroke with a National Institutes of Health Stroke Scale score of 6 or more who were eligible for thrombolysis and admitted within 4.5 h of symptom onset were consecutively included. Random assignment, done by a computer with a block size of 4 and with allocations placed into opaque envelopes to be opened consecutively, was 1:1 between intravenous tenecteplase (0.4 mg/kg) or standard dose alteplase (0.9 mg/kg). Doctors and nurses providing acute care were not masked to treatment, but primary outcome assessment at 3 months was masked. The primary outcome was favourable functional outcome defined as a modified Papikip. Scale score of 0, 1 at 3 months, assagged in the medified intention to treat applying (aveluding

Lancet Neurol 2022

Published Online

Department of Neurology (C E Kvistad PhD, Prof H Næss PhD, A Fromm MD PhD, Prof L Thomassen PhD) and Department of Radiology (J Haasz PhD, G Singaravel MD), Haukeland University Hospital.

Tenecteplase versus alteplase for the management of acute ischaemic randomise trial

Christopher Elnan Kvistad Daq M Rörholt, Kamaljit k

```
Summary
```

Background Tenectep alteplase—which is that 0.4 mg/kg tenec albeit in a patient po non-inferiority of ten

Methods This phase with stroke units in Stroke Scale score of consecutively includ into opaque envelop dose alteplase (0.9)

Symptomatic ICH and Mortality greater for 0.4 mg/kg TNK

57% were LVOs

outcome assessment at 3 months was masked. The primary outcome was favourable functional outcome defined as a modified Doubin Coole group of 0, 1 at 2 months, accorded in the modified intention to treat analysis (avaluation

Randomized, Open, Non-inferiority

Phase 3. 0.4 mg/kg TNK vs ALT

< 4.5 hr: NIHSS > 5

Terminated early for Safety

N = 100 (TNK), 104 (ALT)

Comparison of tenecteplase with alteplase for the early treatment of ischaemic stroke in the Melbourne Mobile Stroke Unit (TASTE-A): a phase 2, randomised, open-label trial

Andrew Bivard, Henry Zhao, Leonid Churilov, Bruce CV Campbell, Skye Coote, Nawaf Yassi, Bernard Yan, Michael Valente, Angelos Sharobeam, Anna H Balabanski, Angela Dos Santos, Jo Lyn Ng, Vignan Yogendrakumar, Felix Ng, Francesca Langenberg, Damien Easton, Alex Warwick, Elizabeth Mackey, Amy MacDonald BN, Gagan Sharma, Michael Stephenson, Karen Smith, David Anderson, Philip Choi, Vincent Thijs, Henry Ma, Geoffrey C Cloud, Tissa Wijeratne, Liudmyla Olenko, Dominic Italiano, Stephen M Davis, Geoffrey A Donnan, Mark W Parsons, on behalf of the TASTE-A collaborators*

Summary

Background Mobile stroke units (MSUs) equipped with a CT scanner reduce time to thrombolytic treatment and improve patient outcomes. We tested the hypothesis that tenecteplase administered in an MSU would result in superior reperfusion at hospital arrival, when compared with alteplase.

Methods The TASTE-A trial is a phase 2, randomised, open-label trial at the Melbourne MSU and five tertiary hospitals in Melbourne, VIC, Australia. Patients (aged ≥ 18 years) with ischaemic stroke who were eligible for thrombolytic treatment were randomly allocated in the MSU to receive, within 4.5 h of symptom onset, either standard-of-care alteplase (0.9 mg/kg [maximum 90 mg], administered intravenously with 10% as a bolus over 1 min and 90% as an infusion over 1 h), or the investigational product tenecteplase (0.25 mg/kg [maximum 25 mg], administered as an intravenous bolus over 10 s), before being transported to hospital for ongoing care. The primary outcome was the volume of the perfusion lesion on arrival at hospital, assessed by CT-perfusion imaging. Secondary safety outcomes were modified Rankin Scale (mRS) score of 5 or 6 at 90 days, symptomatic intracerebral haemorrhage and any haemorrhage within 36 h, and death at 90 days. Assessors were masked to treatment allocation. Analysis was by intention to treat. The trial was registered with ClinicalTrials nov NCT04071613, and is completed.

Lancet Neurol 2022 Published Online May 4, 2022 https://doi.org/10.1016/ S1474-4422(22)00171-5 See Online/Comment https://doi.org/10.1016/ S1474-4422(22)00172-7 *TASTE-A collaborators listed at the end of the Article Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia (A Divard DbD

early treatment of ischaemic stroke in the Melhourne

Comparison of tenecteplase with alteplase for the

Mobile S open-lal

Andrew Bivard, Her Anna H Balabanski, Elizabeth Mackey, A Geoffrey C Cloud, Ti TASTE-A collaborat

Summary Background Mo improve patien superior reperfi

Methods The TA in Melbourne, treatment were alteplase (0 · 9 n infusion over 1 intravenous bol volume of the p were modified Phase 2 Mobile Stroke Unit

Randomized, Open

< 4.5 hr; 0.25 mg/kg TNK vs ALT

N = 55 (TNK), 49 (ALT)

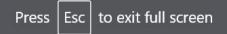
Volume of Perfusion Lesion (CTP) on hospital arrival

Smaller perfusion volume with TNK

Quicker door-to-needle

haemorrhage within 36 h, and death at 90 days. Assessors were masked to treatment allocation. Analysis was by intention to treat. The trial was registered with ClinicalTrials gov. NCT04071613, and is completed.

ncet Neurol 2022


ıblished Online ay 4, 2022 tps://doi.org/10.1016/ 474-4422(22)00171-5

e Online/Comment tps://doi.org/10.1016/ 474-4422(22)00172-7

ASTE-A collaborators listed at end of the Article

epartment of Medicine and eurology, Melbourne Brain entre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia (A Biyard BbD

TWIST (TENECTEPLASE IN WAKE-UP ISCHAEMIC STROKE TRIAL)

Design

- Prospective randomised open trial with blinded endpoint assessment
- Target sample size: 600 patients
- Inclusion criteria:
 - Wake-up stroke with limb weakness and NIHSS score ≥ 3, or aphasia
 - Possible to treat within 4.5 hours of awakening
- Main exclusion criteria:
 - Intracranial hemorrhage
 - Infarct size >1/3 of the middle cerebral artery territory
 - NIHSS score >25 or NIHSS consciousness score >2
 - mRS ≥ 3


35

Melinda B. Roaldsen

TWIST (TENECTEPLASE IN WAKE-UP ISCHAEMIC STROKE TRIAL)

- Prospectiv
- Target san
- Inclusion
 - Wake-u
 - Possible
- Main excl
 - Intracra
 - Infarct s
 - NIHSS s
 mRS ≥ 3

- Randomized, PROBE
- < 4.5 hr from awakening

Phase 3 Wake-up Stroke

0.25 mg/kg TNK (N=288) vs standard care (N=290)

Imaging Screen Non-contrast CT

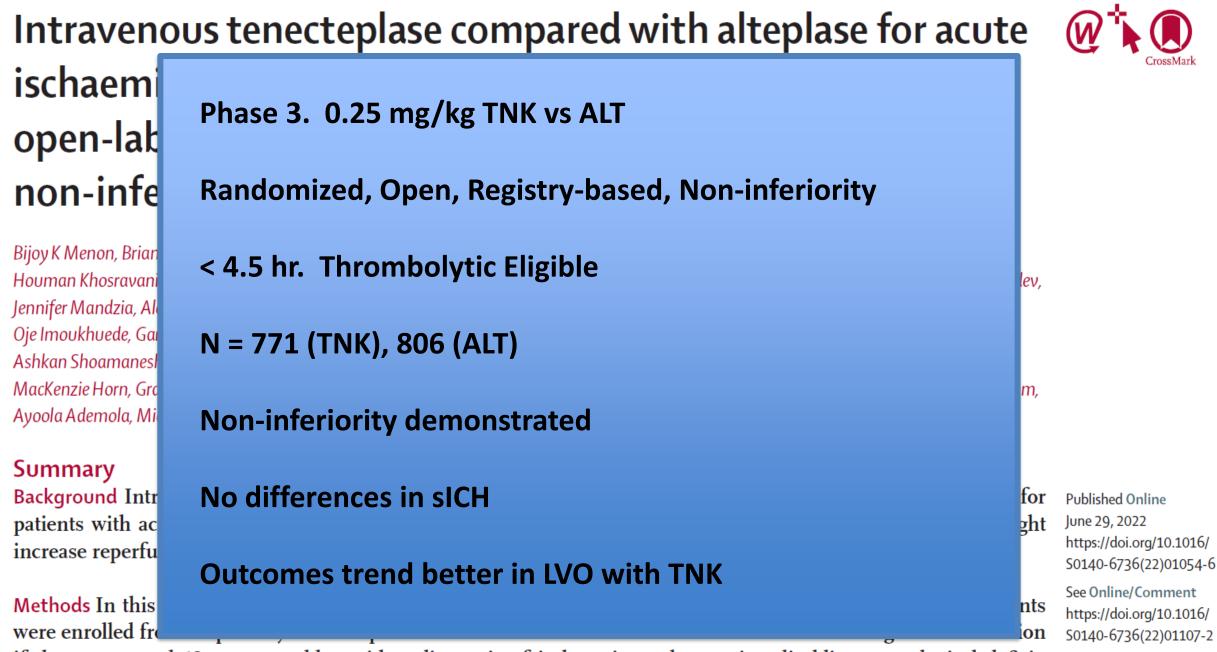
mRS at 3 month 45% (TNK) vs 38% (ns)

More EVT in control arm

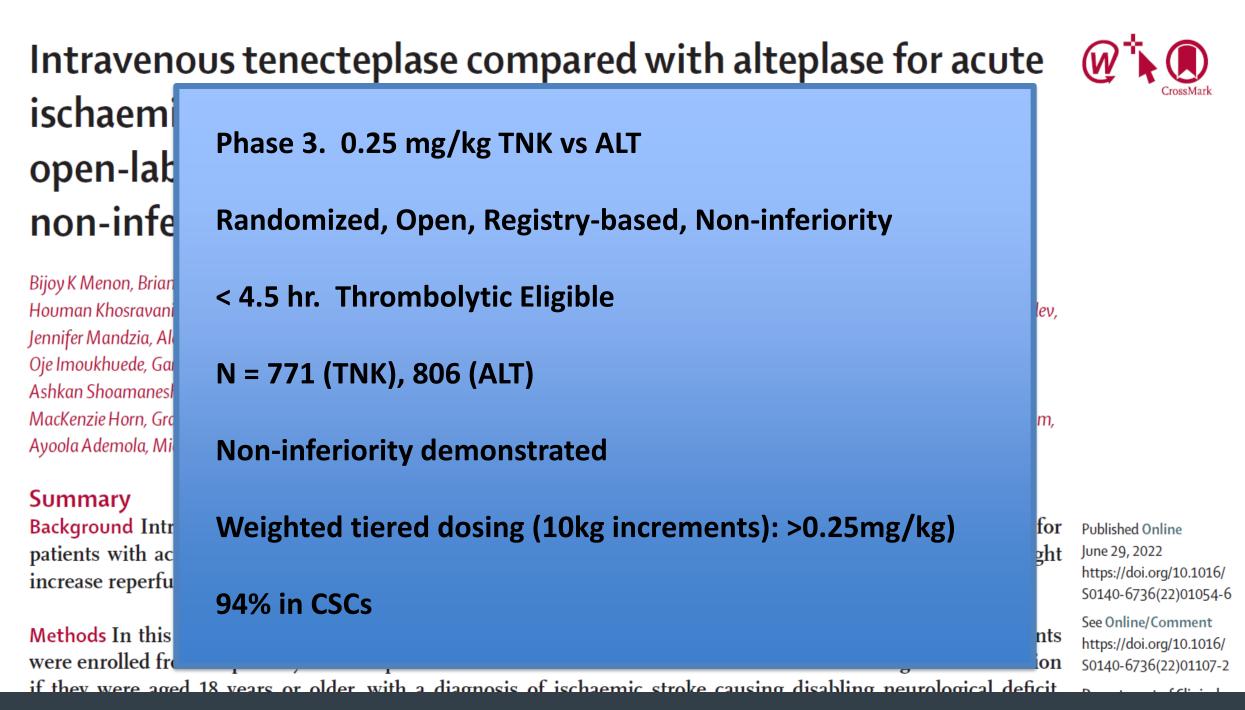
aldsen

Intravenous tenecteplase compared with alteplase for acute ischaemic stroke in Canada (AcT): a pragmatic, multicentre, open-label, registry-linked, randomised, controlled, non-inferiority trial

Bijoy K Menon, Brian H Buck, Nⁱshita Singh, Yan Deschaintre, Mohammed A Almekhlafi, Shelagh B Coutts, Sibi Thirunavukkarasu, Houman Khosravani, Ramana Appireddy, Francois Moreau, Gord Gubitz, Aleksander Tkach, Luciana Catanese, Dar Dowlatshahi, George Medvedev, Jennifer Mandzia, Aleksandra Pikula, Jai Shankar, Heather Williams, Thalia S Field, Alejandro Manosalva, Muzaffar Siddiqui, Atif Zafar, Oje Imoukhuede, Gary Hunter, Andrew M Demchuk, Sachin Mishra, Laura C Gioia, Shirin Jalini, Caroline Cayer, Stephen Phillips, Elsadig Elamin, Ashkan Shoamanesh, Suresh Subramaniam, Mahesh Kate, Gregory Jacquin, Marie-Christine Camden, Faysal Benali, Ibrahim Alhabli, Fouzi Bala, MacKenzie Horn, Grant Stotts, Michael D Hill, David J Gladstone, Alexandre Poppe, Arshia Sehgal, Qiao Zhang, Brendan Cord Lethebe, Craig Doram, Ayoola Ademola, Michel Shamy, Carol Kenney, Tolulope T Sajobi, Richard H Swartz, for the AcT Trial Investigators


Summary

Background Intravenous thrombolysis with alteplase bolus followed by infusion is a global standard of care for patients with acute ischaemic stroke. We aimed to determine whether tenecteplase given as a single bolus might increase reperfusion compared with this standard of care.


Methods In this multicentre, open-label, parallel-group, registry-linked, randomised, controlled trial (AcT), patients were enrolled from 22 primary and comprehensive stroke centres across Canada. Patients were eligible for inclusion if they were aged 18 years or older with a diagnosis of ischaemic stroke causing disabling neurological deficit

Published Online June 29, 2022 https://doi.org/10.1016/ S0140-6736(22)01054-6

See Online/Comment https://doi.org/10.1016/ S0140-6736(22)01107-2

if they were aged 18 years or older with a diagnosis of ischaemic stroke causing disabling neurological deficit

On going Phase 3 RCTs with tenecteplase vs alteplase <4.5 hours

Trial	Outcome	Target population	N
ATTEST-2	Superiority, mRS shift	Not EVT eligible	1870
TASTE-2	Superiority, mRS 0-1	LVO; favorable perfusion pattern	1024
TRACE-II	Non-inferiority, mRS 0-1	Not EVT eligible	1430

Other clinical trials with tenecteplase

Trial	Time window	Control arm	Target population	Ν
TEMPO-2	12	SOC	minor stroke with proven occlusion	1274
BRIDGE-TNK	4.5	no lytic	LVO	542
DIRECT-TNK	4.5	placebo	Mechanical thrombectomy	530
RESILIENT	4.5-12	placebo	Non-LVO	642
TIMELESS	> 4.5 < 24	placebo	LVO with penumbra	456
ETERNAL	< 24	SOC	Anterior Circ LVO with penumbra	740
POST-ETERNAL	< 24	SOC	Basilar artery occlusion	688

Tenecteplase as stroke Thrombolytic (as of July 2022)

Data supports tenecteplase as a thrombolytic option

Data indicates at least non-inferiority to alteplase

Possible superiority in early recanalization, safety, 90-day mRS, but confirmation required

Implications for non-TNK clinical trials

- Regulatory: Off-label of thrombolytic use in FDA regulated trials seeking new indication for a drug or device in addition to lytic.
- Design: Trial could limit to one drug but that has recruitment rate and generalizability issues. Currently ~ 20% lytic cases in US are with TNK
- Statistics: If ALT and TNK have different effects sICH, recanalization rates – how does that affect trial planning, assumptions of effect size for the non-lytic intervention being tested? Stratify randomization sufficient?

