Brain Stimulation for Aphasia

Peter Turkeltaub, MD, PhD turkeltp@georgetown.edu

Cognitive Recovery

Center for Brain Plasticity and Recovery

GEORGETOWN UNIVERSITY SCHOOL OF MEDICINE MedStar National Rehabilitation Hospital

Disclosures

- I have no financial disclosures
- I am collaborating with Soterix Medical, Inc. on a clinical trial of transcranial direct current stimulation for aphasia, funded by NIH.

Outline

- Non-invasive brain stimulation techniques
- Brain basis of aphasia recovery (to guide new treatments)
- Evidence so far on non-invasive brain stimulation for aphasia
 - -TMS
 - tDCS
 - Results of a new tDCS trial

Neuromodulation

Medications Speech-Language Therapy

rTMS and tDCS Commonalities

- Increase or decrease cortical excitability
- Effects last minutes-hours after stimulation
- Repeated sessions have long-term effects

rTMS vs. tDCS Differences

rTMS

- Makes neurons fire
- Focal, precise anatomical effect

tDCS

- Alters the probability of neurons firing
- Anatomically wide effect
- Cheaper
- Simpler

- Patient must stay still
- Noisy
- Small risk of seizure

- Can move during Tx
- Silent
- No serious adverse events

How? When? Where? Who? Why?

Understanding the brain basis of aphasia recovery will (hopefully) help to guide the treatment approach.

Recovery from aphasia (weeks- years)

- Depends on
 - Resolution of remote dysfunction
 - Strategic shifts
 - Brain plasticity
- Constrained by
 - Lesion size and location
 - Health of the rest of the brain

- Influenced by experience

Bilateral Language Activity in Chronic Post-Stroke Aphasia

12 studies: 106 patients, 129 controls

Controls Aphasia

Turkeltaub et al., Neurology, 2011

The roles of the two hemispheres in aphasia recovery

- Left Hemisphere
 - Sparing of language networks
 - Perilesional compensation (Fridrikkson et al, 2010)
- Right Hemisphere
 - Compensation (Barlow 1877, Basso 1989, Blasi 2002, Xing 2015)
 - Inefficiency, dysfunction or interference (Naeser 2005, Postman-Caucheteux et al., 2010)
 - Domain general cognitive functions (Geranmayeh et al., 2014)
 - Mixed roles (Saur 2006, Turkeltaub 2011, Anglade 2014, others)

Language is not one thing

Lacey et al., 2017

Different brain regions may be recruited by different mechanisms

- Right M1-mouth activity and Right STS activity relate to good naming outcomes
- Right motor cortex recruited for naming when left motor cortex is damage (Skipper-Kallal et al., 2017a)
- Right STS recruitment is blocked by left STS damage (Skipper-Kallal et al., 2017b)

Emerging Consensus

- Native left hemisphere networks are best
- Most efficient available networks

 Perilesional cortex in small strokes
- Right hemisphere can compensate to some degree
 - Varies by specific language function
 - May be more important in the subacute period
- Multiple biologically and behaviorally driven mechanisms of change

Framework guiding rTMS Treatments: Interhemispheric Inhibition Model

Mutual transcortical inhibition

Unopposed inhibition after unilateral injury Exogenous manipulation restores inhibitory equilibrium

Figure courtesy of Roy Hamilton

Randomized double-blind trials of inhibitory TMS to right IFG Total N = 139

	Re	al rTMS	s	Sha	am rTM	s		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV. Fixed, 95% CI
AAT naming subtest	t								
Heiss WD 2013	6.1	6.35	15	2.4	4.89	14	21.0%	0.63 [-0.12, 1.38]	—
Thiel A 2013	6.67	3.33	13	1.67	5	11	15.3%	1.16 [0.28, 2.04]	
Weiduschat N 2011	26.67	6.15	6	15.75	16.28	4	6.4%	0.89 [-0.47, 2.25]	
Subtotal (95% CI)			34			29	42.7%	0.86 [0.33, 1.38]	
BNT									
Barwood CHS 2013	6.83	15.4	6	0.34	14.15	6	8.9%	0.41 [-0.74, 1.55]	
Subtotal (95% CI)			6			6	8.9%	0.41 [-0.74, 1.55]	
BDAE naming subtes	st								
Seniow J 2013	34.7	30.68	19	20.7	33.36	19	28.4%	0.43 [-0.22, 1.07]	
Subtotal (95% CI)			19			19	28.4%	0.43 [-0.22, 1.07]	
CPNT accuracy of na	ming								
Waldowski K 2012	2.15	2.58	13	2.16	3.46	13	20.0%	-0.00 [-0.77, 0.77]	
Subtotal (95% CI)			13			13	20.0%	-0.00 [-0.77, 0.77]	\bullet
Total (95% CI)			72			67	100.0%	0.52 [0.18, 0.87]	◆
Heterogeneity: Chi ² =	4.28, df	= 5 (P =	0.51);	l² = 0%					
Test for overall effect:	Z = 2.99	(P = 0.	003)					,	-2 -1 0 1 2
Test for subaroup diffe	erences:	Chi ² = 3	3.48. df	= 3 (P =	= 0.32).	l² = 13	.9%	1	ravours snam rims Favours rims

Ren et al., 2014

TMS Effect on Repetition and Writing

A	Re	al rTMS	5	Sham rTMS				Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl		
ATT repetition subtes	st										
Heiss WD 2013	3.5	3.44	15	1.3	3.43	14	25.6%	0.62 [-0.13, 1.37]			
Thiel A 2013	3.11	3.56	13	1.11	3.33	11	21.2%	0.56 [-0.26, 1.38]			
Weiduschat N 2011	15.67	27.24	6	10	4.16	4	8.8%	0.24 [-1.04, 1.51]			
Subtotal (95% CI)			34			29	55.6%	0.54 [0.03, 1.04]			
BDAE repetition subt	est										
Barwood CHS 2013	1.84	2.45	6	0	2.22	6	10.2%	0.73 [-0.46, 1.91]			
Seniow J 2013	4.8	4.22	19	2.4	5.15	19	34.2%	0.50 [-0.15, 1.15]			
Subtotal (95% CI)			25			25	44.4%	0.55 [-0.02, 1.12]			
Total (95% CI)			59			54	100.0%	0.54 [0.16, 0.92]	▲		
Heterogeneity: Chi ² = 0.38, df = 4 (P = 0.98); l ² = 0%											
Test for overall effect:	Z = 2.81	(P = 0.	005)					E,	-Z -1 U 1 Z		
Test for subaroup diffe	rences:	$Chi^2 = 0$).00. df	= 1 (P =	= 0.97)). I ² = 0 ⁶	%	Fe			
В	Re	al rTMS	5	Sha	m rTM	IS		Std. Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI		
ATT writing subtest											
Heiss WD 2013	4.7	4.35	15	2.1	2.65	14	46.7%	0.70 [-0.06, 1.45]			
Thiel A 2013	4.94	4.44	13	1.94	2.78	11	37.8%	0.77 [-0.07, 1.60]	⊢ ∎−−		
Weiduschat N 2011	13.17	11.02	6	6.5	9.98	4	15.6%	0.57 [-0.74, 1.87]			
Subtotal (95% CI)			34			29	100.0%	0.70 [0.19, 1.22]			
Total (95% CI)			34			29	100.0%	0.70 [0.19, 1.22]	◆		
Heterogeneity: Chi ² = (0.07, df	= 2 (P =	0.97);	l² = 0%							
Test for overall effect:	Z = 2.68	6 (P = 0.	007)					F	-z -i u i z		

Ren et al., 2014

TMS Effect on Comprehension

	Re	al rTM	S	Sha	am rTM	S		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	roup Mean SD Total Mean SD Total Weight IV, Fixed, 95% C		IV. Fixed, 95% CI						
AAT comprehension	subtest	t i							
Heiss WD 2013	4.4	3.7	15	1.8	3.72	14	28.2%	0.68 [-0.07, 1.43]	
Thiel A 2013	4.45	3.33	13	1.66	3.44	11	22.6%	0.80 [-0.04, 1.64]	
Weiduschat N 2011	10.17	11.37	6	15.5	20.34	4	9.8%	-0.31 [-1.59, 0.96]	
Subtotal (95% CI)			34			29	60.6%	0.56 [0.05, 1.08]	-
BDAE comprehension	on subte	st							
Seniow J 2013	19.4	20.44	19	20.6	19.81	19	39.4%	-0.06 [-0.69, 0.58]	
Subtotal (95% CI)			19			19	39.4%	-0.06 [-0.69, 0.58]	-
Total (95% Cl)			53			48	100.0%	0.32 [-0.08, 0.72]	•
Heterogeneity: Chi ² =	4.43, df	= 3 (P =	0.22);	² = 32%	6				
Test for overall effect:	Z = 1.56	(P = 0.	12)					E	-2 -1 U I Z
Test for subaroup diffe	erences:	Chi ² = 2	2.23. df	= 1 (P =	= 0.14).	$ ^2 = 55$.1%	1.5	
Token test									
Heiss WD 2013	3.7	3.7	15	1.1	3.67	14	45.9%	0.69 [-0.07, 1.44]	
Thiel A 2013	3.61	3.61	13	1.11	3.72	11	37.9%	0.66 [-0.17, 1.49]	
Weiduschat N 2011	3.66	5.2	6	3.25	2.36	4	16.2%	0.08 [-1.18, 1.35]	
Total (95% CI)			34			29	100.0%	0.58 [0.07, 1.09]	•
Heterogeneity: Chi ² =	0.70, df	= 2 (P =	0.71);	$ ^2 = 0\%$					
Test for overall effect:	Z = 2.22	(P=0.	03)					E	-2 -1 U I Z
Test for subgroup diffe	erences:	Not apr	licable					Fe	

Ren et al., 2014

TMS Effect on Overall Severity

	Real rTMS		3	Sham rTMS				Std. Mean Difference	e Std. Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	IV, Fixed, 95% Cl				
The global ATT score	e						_						
Weiduschat N 2011	19.83	8.2	6	8.5	9.95	4	10.1%	1.15 [-0.27, 2.57]					
Hartmann A 2013	22.8	12.36	11	9.4	12.79	10	24.0%	1.02 [0.10, 1.95]					
Thiel A 2013	23.6	12.15	13	7.55	11	11	25.1%	1.33 [0.43, 2.23]	— • — •				
Heiss WD 2013	22.4	1.77	15	8.6	10.06	14	25.4%	1.89 [0.99, 2.79]					
Subtotal (95% CI)			45			39	84.8%	1.39 [0.90, 1.88]					
The global BDAE sco	ore												
Barwood CHS 2013	18.5	36.68	6	0.17	28.73	6	15.2%	0.51 [-0.65, 1.67]					
Subtotal (95% CI)			6			6	15.2%	0.51 [-0.65, 1.67]					
Total (95% CI)			51			45	100.0%	1.26 [0.80, 1.71]	•				
Heterogeneity: Chi ² = 3	3.79, df	= 4 (P =	0.44);	l² = 0%									
Test for overall effect:	Z = 5.44	(P < 0.	00001)					r	-2 -1 U 1 Z				
Test for subaroup diffe	rences:	$Chi^2 = 1$.86. df	= 1 (P =	= 0.17).	² = 46	.3%	F					

Ren et al., 2014

Limitations of TMS data

- Insufficient evidence for functional communication (i.e., measures of daily life communication)
- Mechanism of effect of right IFG inhibition
 is unclear

tDCS approaches Left inferior frontal anodal stimulation

tDCS approaches Bi-frontal or left lateralizing frontal

= anode (excitation)

= cathode (inhibition?)

tDCS approaches Bi-frontal or right lateralizing frontal

= anode (excitation)

= cathode (inhibition?)

tDCS approaches Individually targeted

= anode (excitation)

= cathode (inhibition?)

tDCS approaches Individually targeted

Lots of small studies

Articles	Number and type of patients	Target	Control condition	Stimulation polarity and intensity	Duration and number of sessions		Results
Polanowska et al. [25]	24 (post-acute stroke/non-fluent aphasics: 2–24 weeks after stroke)	LIFG	sham	Anodal 1 mA		10 min, 15 sessions (followed by 45 min of picture naming task)	Improvement in naming accuracy and naming response time in both groups (A-tDCS and Sham)
olanowska et al. [26]	37 (post-acute stroke/non-fluent aphasics: 2-24 weeks after stroke)	LIFG	sham	Anodal 1 mA		10 min, 15 sessions (followed by 45 min of picture naming task)	Improvement in the BDAE in both groups (A- tDCS and Sham) both at post-treatment and at 3 months follow-up.
farangolo et al. [20]	12 (chronic stroke/non-fluent aphasics: 5–84 months after stroke)	LIFG Left Wernicke's area	sham	Anodal, 1 mA		20 min, 10 sessions (during conversational therapy)	Improvement in content units, verbs and sentences production after tDCS over LIFG at post- treatment and at 1 month follow-up.
larangolo et al. [21]	12 (chronic stroke/non-fluent aphasics: 6–74 months after stroke)	Bihemispheric, tDCS: Anodal tDCS over LIFG and Cathodal tDCS over RIFG	sham	Anodal and Cathodal, 2 mA		20 min, 10 sessions (during repetition task)	Improvement in repetition accuracy and response time for syllables, words and sentences (on trained and untrained stimuli) after bihemispheric tDCS at post-treatment and at 1 week follow-up.
farangolo et al. [22]	8 (chronic stroke/non-fluent aphasics: 12–84 months after stroke)	LIFG Left Wernicke's area	sham	Anodal, 1 mA		20 min, 5 sessions (during verb naming)	Improvement in verb naming after A- tDCS over the LIFG at post-treatment and at 1 month follow-up.
ee et al. [48]	11 (chronic stroke/6 non-fluent and 5 fluent aphasics: 8–180 months after stroke)	Bihemispheric, tDCS: Anodal tDCS over LIFG and Cathodal tDCS over RIFG Single tDCS, LIFG	no no	Anodal and Cathodal, 2 mA Anodal, 2 mA		30 min, 1 session (during picture naming task)	Improvement in naming response time in the BNT after bihemispheric tDCS, no significant improvement after single tDCS. Improvement in naming accuracy after bihemispheric and single tDCS. No follow in
ori et al. [17]	7 (chronic stroke/non-fluent aphasics: 9-84 months after stroke)	LIFG, Left Wernicke's area	sham	Anodal, 1 mA		20 min, 5 sessions (during noun and verb naming)	Improvement in noun naming after A-tDCS over left Wernicke's and in verb naming after A-tDCS over LIFG at post-treatment and at 1 and 4 weeks follow-up.
herney et al. [30]	1 (chronic stroke/non-fluent aphasic: 204 months after stroke)	Right Wernicke area	no	Cathodal, 1 mA		13 min, 30 sessions (during SLT)	Improvement in WAB AQ and in auditory comprehension at post- treatment.
ou et al. [37]	21 (post-acute stroke/non-fluent aphasics: 16–38 days after stroke)	Left or right Wernicke's area	sham	Anodal over left Wernicke's area or cathodal right Wernicke's area, 2 mA		30 min, 10 sessions (during SLT)	Improvement in auditory verbal comprehension after C-tDCS at post-treatment. No follow-up.
ines et al. [39]	6 (chronic stroke/non-fluent aphasics: 15–120 months after stroke)	RIFG	sham	Anodal, 1.2 mA		20 min, 3 sessions (during MIT)	Improvement in verbal fluency after A-tDCS at post-treatment. No follow-up
larangolo et al. [58]	3 (chronic stroke/non-fluent aphasics: 7–48 months after stroke)	LIFG	sham	Anodal, 1 mA		20 min, 5 sessions (during repetition task)	Improvement in syllables and words repetition after A- tDCS at post-treatment and at 2 months follow-up Improvement in different language subtests.
ung et al. [38]	37 (post-acute/chronic stroke: average 221 days after stroke)	RIFG	no	Cathodal, 1 mA		30 min, 10 sessions (during SLT)	Improvement in the WAB AQ. No follow-up.
ang et al. [36]	10 (chronic stroke/8 non-fluent and 2 fluent aphasics: 6 - 181 months after stroke)	RIFG	sham	Cathodal, 2mA		20 min, 5 session (during word- retrieval training)	Improvement in naming accuracy in the BNT at 1 h following the last C-tDCS session, no changes after sham. No follow-up.
ridriksson et al.	8 (chronic stroke/fluent aphasics: 10–150 months after stroke)	Left posterior cortex	sham	Anodal, 1 mA		20 min, 5 sessions (during picture naming)	Improvement in naming accuracy after A-tDCS at post-treatment and at 3 weeks follow-up.
loel et al. [67]	12 (chronic stroke/9 non-fluent aphasics and 3 fluent aphasics: 14–260 months after stroke)	Right temporo-parietal cortex	sham	Anodal, Cathodal, 1 mA		20 min, 3 sessions (2 × 1 h/day of computer-assisted naming)	Improvement in naming accuracy after A-tDCS at post-treatment and at 2 weeks follow-up.
iori et al. [16]	3 (chronic stroke/non-fluent aphasics: 21–71 months after stroke)	Left Wernicke's area	sham	Anodal, 1 mA		20 min, 5 sessions (during SLT)	Improvement in naming accuracy and response time after A-tDCS at post-treatment and at 3 weeks follow-in
							(continued on next pag

Marangolo, 2017

Ρ.

tDCS trial in chronic aphasia

- Phase II randomized double-blind sham-controlled trial
 - Real vs. sham tDCS (2:1) with speech therapy
 - > 6 months post-stroke (broad inclusion)
 - Funded by Doris Duke Charitable Foundation and the National Center for Advancing Translational Sciences via the GHUCCTS

Study Design

Prespecified Primary Outcome Measure = WAB Naming and Word Finding

Participants

	Active tDCS (N=24)	Sham tDCS (N=14)	Diff
Age (yrs)	60.2 (10.9)	60.1 (8.6)	P=.97
Sex	16M, 8 F	9M, 5F	P>.99
Time since Stroke			
(mo)	55.1 (44.0)	44 (26.9)	P=.51
WAB AQ (/100)	66.3 (21.1)	65.1 (26.8)	P=.88
WAB N&WF (/10)	6.1 (2.9)	6.1 (3.0)	P=.99
PNT (%)	53.6 (29.9)	53.6 (39.2)	P>.99
Written PNT (%)	21.8 (16.25)	25.5 (21.7)	P=.57

Also matched on lesion size, apraxia, education

No serious Adverse Events

1 drop out (active tDCS, unclear reason, came to 2 week follow up only)

WAB Naming and Word Finding

 $F_{(3,105)} = 1.78$, P = .16, partial $\eta^2 = .048$

WAB Aphasia Quotient

Spoken Naming

 $F_{(3,105)} = 0.28$, P = .84, partial $\eta^2 = .008$

Written Naming

N=34, $F_{(3,96)}$ = 4.68, P = .004, partial η^2 = .128

tDCS Effect on Noun Naming PosttDCS

Study or subgroup	Experimental		Control		Std. Mean Difference	Weight	Std. Mean Difference	
	Ν	Mean(SD)	N	Mean(SD)	IV,Random,95% CI		IV,Random,95% CI	
Fiori 2013 (1)	4	8.8 (5.7)	3	0 (0)			Not estimable	
Flöel 2011 (2)	8	90.1 (10.1)	4	69.8 (46.7)		3.6 %	0.70 [-0.55, 1.94]	
Fridriksson 2018 (3)	34	13.9 (14)	40	8.2 (13.8)		26.4 %	0.41 [-0.06, 0.87]	
Kang 2011 (4)	5	3.8 (5.8)	5	1.4 (1.9)		3.5 %	0.50 [-0.77, 1.77]	
Marangolo 2013b (5)	4	7.5 (17.4)	4	20 (15.6)	• • • • • • • • • • • • • • • • • • •	2.6 %	-0.66 [-2.12, 0.80]	
Meinzer 2016 (6)	13	27.9 (14.9)	13	16.7 (16.4)		8.9 %	0.69 [-0.10, 1.49]	
Monti 2008a (7)	4	1.33 (1.83)	4	0.13 (0.83)		2.6 %	0.73 [-0.74, 2.21]	
Polanowska 2013 (8)	18	11.8 (6.16)	19	7.3 (4.55)		12.4 %	0.82 [0.14, 1.49]	
Spielmann 2016 (9)	26	6.5 (3.78)	32	4.7 (4.37)		20.5 %	0.43 [-0.09, 0.96]	
Turkeltaub 2017 (10)	23	2.8 (5.48)	14	2.8 (20.48)		12.8 %	0.0 [-0.66, 0.66]	
You 2011 (11)	14	9.1 (12.3)	7	5.4 (10.3)		6.8 %	0.30 [-0.61, 1.22]	
Total (95% CI)	153		145		•	100	0 % 0 42 [0 19 0 66 1
Heterogeneity: $Tau^2 = 0.0$	$D; Chi^2 = 5.86, df = 0.0004$: 9 (P = 0.75); I ² :	=0.0%			100		0.17, 0.00]
The for overall effect: $\angle =$	= 3.49 (P = 0.00048	5)						
lest for subgroup differer	ices: Not applicable							
					-2 -1 0 1 2			
					Favours sham Favours tDCS			

Elsner et al., 2019

tDCS Effect on Noun Naming at Follow-Up

Study or subgroup	tDCS N	Mean(SD)	Sham N	Mean(SD)		D IV,Ran	∩ Differe idom,	Std. 1ean ence ,95% Cl		Weight	Std. Mean Difference IV,Random,95% Cl
Meinzer 2016 (1)	11	24.3 (11.6)	П	8.7 (11.2)				-	→	32.4 %	1.32 [0.38, 2.26]
Spielmann 2016 (2)	26	12.5 (3.78)	32	10.6 (1.88)			-	+		67.6 %	0.65 [0.12, 1.18]
Total (95% CI)	37		43				-			100.0 %	0.87 [0.25, 1.48]
Heterogeneity: $Tau^2 = 0.0$	$07; Chi^2 = 1.$.47, df = 1 (P = 0.2	3); l ² =32%								
Test for overall effect: Z =	= 2.77 (P = 0	0.0056)									
Test for subgroup differen	ices: Not app	plicable									
								1			
					-2	-1	0	1	2		
					Favou	irs sham		Favours t	DCS		

Other notes from the meta-analysis

- Moderate quality of evidence for naming
- No effect on functional communication
- No significant effect of stimulation site/polarity
- No significant effect of aphasia type
- Analysis of naming at follow-up did not include several papers for unclear reasons
- "Current evidence does not support the routine use of tDCS for aphasia after stroke."

Summary of Findings

- Negative trial
- Small to medium effects

 Not clinically significant
- Largest effect was on written naming
- Variance in treatment group suggests
 individual differences

Recent positive developments

- Increasing sample sizes
 - Meinzer et al., 2016 (n=26)
 - Polanowska et al., 2013 (n=37)
 - Fridriksson et al., 2018 (n>60)
 - Turkeltaub et al., forthcoming (n=38)
 - Hillis, Tsapkini, Sebastian, in progress
- Multi-site RCTs
 - NORTHSTAR, completed enrollment (?)
 - TEASER, in progress (planned n = 58)
- Brain imaging pre and post

Needed areas of investigation for tDCS and rTMS

- Larger multi-site studies
- Systematic parameter exploration
 - Electrode placement
 - Polarity and intensity
 - Length of treatment
 - Timing (after stroke and in relation to therapy)
 - Stimulation- Therapy pairings
 - \rightarrow individualized treatment approach
- Brain imaging measures to understand biological mechanisms of effect
- Clinically meaningful outcome measures

Conclusions

- rTMS and tDCS are both promising
- Both appear to be safe
- Efficacy not clearly established yet
- More research needed
 - Understanding brain basis of aphasia recovery
 - Understanding mechanisms of effect
 - Optimizing treatment protocols
 - Test for clinically meaningful effects

Thank You!

Georgetown University

Shihui Xing, MD Laura Skipper-Kallal, PhD Elizabeth Lacey, PhD Maryam Ghaleh, PhD Andrew DeMarco, PhD, CCC-SLP Mackenzie Fama, PhD, CCC-SLP Candace van der Stelt, MS, CCC-SI P Sarah Snider, MS, CCC-SLP **Vivian Dickens** Elizabeth Dvorak Zainab Anbari GU-HU - MHRI · ORNL . Rhonda Friedman, PhD

MedStar National Rehabilitation Hospital Lauren Taylor, CCC-SLP Laura Hussey, CCC-SLP Jessica Friedman, CCC-SLP Molly Stamp, CCC-SLP Michelle Harris-Love, PT, PhD

Funding

The Vernon Family Trust

WDCVA

GEORGETOWN NIVERSITY SCHOOL OF MEDICINE Georgetown-Howard Universities Center for Clinical and Translational Science

MedStar National **Rehabilitation Hospital**

