Cancer and Stroke

Babak Navi MD, MS Assistant Professor of Neurology Stroke Center Director Weill Cornell Medicine

Disclosures

- NIH grants K23NS091395, KL2TR000458-06
- Site PI for POINT trial (NIH grant U01NS062835)
- Florence Gould Endowment for Discovery in Stroke
- No financial conflicts

Objectives

- Define the epidemiological relationship between cancer and stroke
- Identify the common mechanisms of stroke in patients with cancer
- Evaluate different treatment strategies for patients with cancer and stroke
- Review the prognosis of cancer patients who develop stroke

Health Burden

- 1.6M cancers diagnosed each year in USA
- Estimated 40% lifetime incidence of cancer¹
- 800K strokes each year in USA²
- Leading causes of death
- 15% of cancer patients have cerebrovascular disease at autopsy³

Intertwined Diseases

- Shared risk factors
 - Age
 - Smoking
 - Obesity
 - Atrial fibrillation^{1, 2}
- Cancer-mediated hypercoagulability
- Effects of cancer therapies

Cancer the Chronic Disease?

- Earlier detection and improved cancer treatments have prolonged cancer survival – In USA, two-thirds survive >5 years
- Further advances through targeted agents and immunotherapy will likely lead to more cancer survivors but also more patients at risk for cardiovascular events

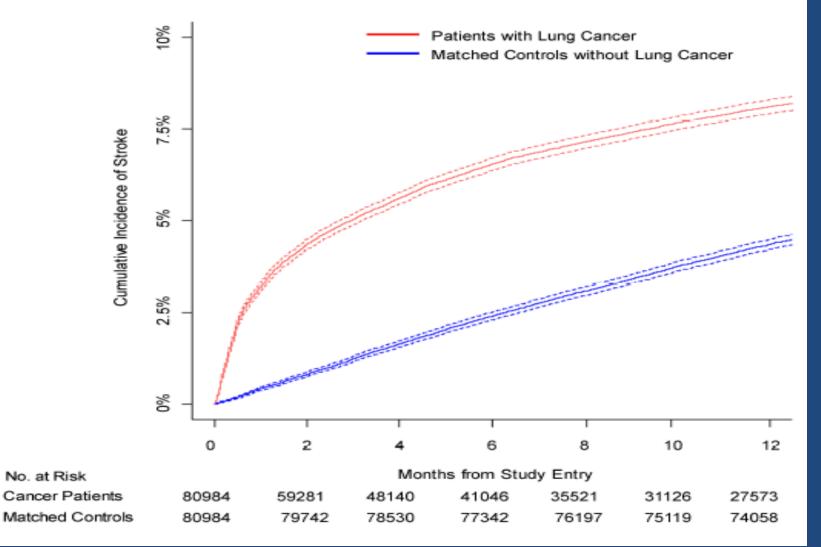
Themes

- Cancer is an independent risk factor for stroke
- Mechanisms of stroke in cancer are unique
- Treatment is often unorthodox and individualized (and not very evidence based)

Cancer is Common in Stroke Patients

- 10% of stroke patients have a cancer history^{1,2}
- 4% of stroke patients are diagnosed with cancer after their stroke (mean follow-up 2.4 years)¹
- Stroke independently predicts new cancer diagnoses (RR 1.10)¹

Does Cancer Predict Stroke?


- Using SEER-Medicare database, identified elderly patients (n=327K) with a new diagnosis of lung, breast, prostate, colorectal, or pancreatic cancer from 2001 to 2008¹
 - 4 most common cancers (51% of all cancer) and cancer most commonly linked to thrombosis
- Controls matched by age, sex, race, region, Charlson comorbidity index, and HTN/AF
- Patients with prior cerebrovascular disease diagnoses excluded
- Followed until death, stroke, or 2010
- Stroke identified through validated ICD-9 codes

Cumulative Incidence of Stroke

	3 Months	6 months	1 year
Prostate			
Cases	1.2 (1.1-1.3)	2.1 (2.0-2.2)	3.6 (3.5-3.8)
Controls	1.1 (1.0-1.2)	2.1 (2.0-2.2)	3.8 (3.6-3.9)
Lung			
Cases	5.1 (4.9-5.2)	6.6 (6.4-6.7)	8.1 (8.0-8.3)
Controls	1.2 (1.2-1.3)	2.4 (2.3-2.5)	4.4 (4.2-4.5)
Breast			
Cases	1.5 (1.4-1.6)	2.3 (2.2-2.4)	3.9 (3.8-4.1)
Controls	1.1 (1.0-1.2)	2.1 (2.0-2.2)	3.9 (3.7-4.0)
Colorectal			
Cases	3.3 (3.2-3.4)	4.7 (4.5-4.8)	6.2 (6.0-6.4)
Controls	1.3 (1.2-1.4)	2.4 (2.3-2.6)	4.6 (4.4-4.7)
Pancreas			
Cases	3.4 (3.1-3.6)	4.3 (4.0-4.6)	
Controls	1.3 (1.2-1.4)	2.3 (2.1-2.6)	

¹Navi BB et al, Ann Neurol 2015.

Cumulative Incidence of Stroke— Lung Cohort

¹Navi BB et al, Ann Neurol 2015.

Cumulative Incidence of Hemorrhagic Stroke

	3 Months	6 months	1 year
Prostate			
Cases	0.09 (0.07-0.10)	0.16 (0.14-0.19)	0.30 (0.26-0.33)
Controls	0.07 (0.06-0.09)	0.12 (0.11-0.15)	0.24 (0.21-0.27)
Lung			
Cases	0.51 (0.46-0.56)	0.66 (0.60-0.71)	0.86 (0.80-0.92)
Controls	0.07 (0.05-0.09)	0.13 (0.11-0.16)	0.25 (0.22-0.29)
Breast			
Cases	0.12 (0.10-0.15)	0.19 (0.16-0.22)	0.32 (0.28-0.37)
Controls	0.06 (0.04-0.08)	0.12 (0.10-0.16)	0.26 (0.22-0.30)
Colorectal			
Cases	0.17 (0.14-0.21)	0.28 (0.24-0.32)	0.43 (0.38-0.48)
Controls	0.09 (0.07-0.10)	0.16 (0.13-0.19)	0.27 (0.23-0.31)
Pancreas			
Cases	0.23 (0.16-0.30)	0.30 (0.20-0.40)	
Controls	0.07 (0.03-0.10)	0.10 (0.05-0.20)	

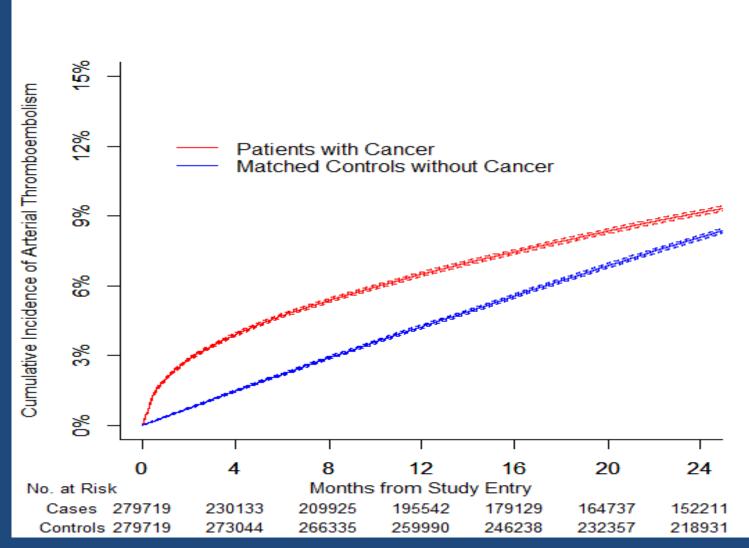
¹Navi BB et al, Ann Neurol 2015.

Relative Hazards of Stroke during Discrete Time Periods

	Time Periods After Cancer Diagnosis					
	0-1 Month	1-3 Months	3-6 Months	6-9 Months	9-12 Months	
Lung	7.4 (6.7-8.3)	2.7 (2.4-2.9)	2.0 (1.8-2.1)	1.6 (1.5-1.8)	1.7 (1.5-1.9)	
Pancreas	4.3 (3.3-5.5)	2.1 (1.7-2.7)	1.6 (1.3-2.0)			
Colorectal	4.2 (3.7-4.7)	1.8 (1.6-2.0)	1.4 (1.3-1.5)	0.9 (0.8-1.0)	0.9 (0.8-1.0)	
Breast	1.7 (1.5-2.0)	1.2 (1.0-1.3)	0.9 (0.8-1.0)	0.9 (0.8-1.0)	0.9 (0.8-1.0)	
Prostate	1.3 (1.1-1.4)	1.0 (0.9-1.1)	1.0 (0.9-1.1)	0.9 (0.8-1.0)	0.9 (0.8-1.0)	

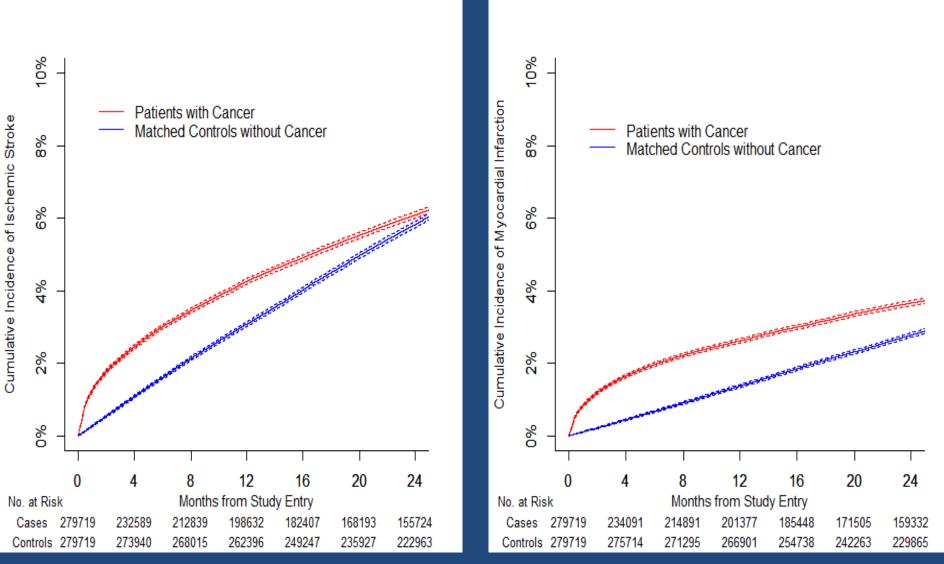
SER-Medicare Study Conclusions

- Incident cancer is associated with a markedly increased short-term risk of stroke¹
- Risk is highest soon after cancer diagnosis and then attenuates over time
- Aggressiveness of underlying cancer correlates with degree of risk
- Risk increased for both ischemic and hemorrhagic stroke but persists longer for hemorrhagic type


Cancer and Risk of Arterial Thromboembolism

- Using SEER-Medicare, study cohort expanded to 8 cancer types from 2002 through 2011, including breast, prostate, lung, colorectal, bladder, NHL, pancreatic, and gastric¹
 - Represents 64% of all cancer in USA, 5 most common solid tumors, most common hematologic tumor, and 2 cancers with highest risk of VTE
- Identified controls matched by age, sex, race, geographic region, Charlson comorbidity index, and HTN/AF
- Patients with prior coronary and cerebrovascular disease excluded
- Followed until death, MI, ischemic stroke, or Dec 31, 2012
- Primary outcome was a composite of MI and ischemic stroke identified through validated ICD-9 codes
- Secondary outcomes included MI alone and ischemic stroke alone

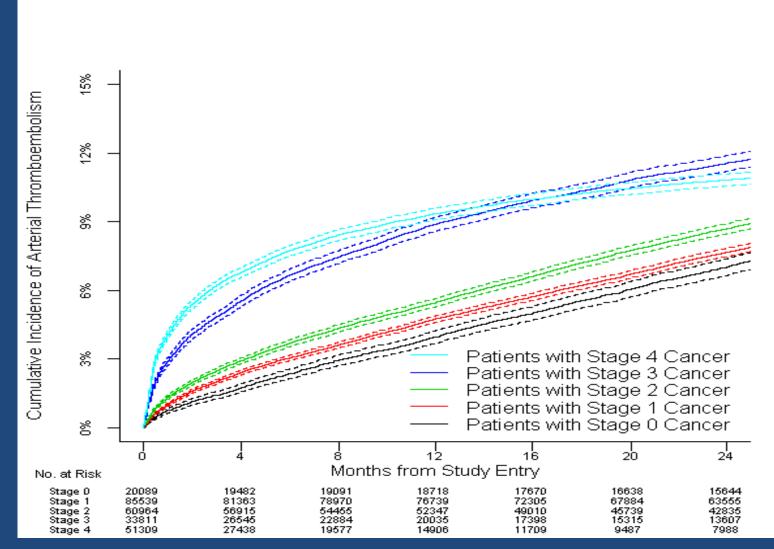
Baseline Characteristics


- 279,719 pairs of cancer patients and matched controls identified
- Median age 74 years, 48% men, 85% white
- Most had early stage disease (30% were stage 3 or 4 at diagnosis)
- Any Charlson comorbidity present in 25% and 61% had prior HTN or AF
- Median survival from time of cancer diagnosis was 5.2 years in cancer patients and not yet reached in matched controls

Cumulative Incidence of Arterial Thromboembolism in Cancer Patients and Matched Controls

Navi BB et al, submitted.

Cumulative Incidence of MI and AIS in Cancer Patients and Matched Controls



Navi BB et al, submitted.

Relative Hazards of Outcomes during Discrete Time Periods

	Time Periods After Cancer Diagnosis					
	0-1 Month	1-3 Months	3-6 Months	6-9 Months	9-12 Months	
Arterial Thromboembolism	5.2 (4.9-5.6)	2.1 (2.0-2.2)	1.4 (1.3-1.5)	1.1 (1.1-1.2)	1.1 (1.0-1.1)	
Myocardial Infarction	7.3 (6.5-8.2)	3.0 (2.7-3.3)	1.8 (1.6-1.9)	1.3 (1.2-1.4)	1.0 (1.0-1.1)	
Ischemic Stroke	4.5 (4.1-4.8)	1.7 (1.6-1.8)	1.3 (1.2-1.3)	1.0 (1.0-1.1)	1.1 (1.0-1.2)	

Arterial Thromboembolism Incidence Stratified by Cancer Stage

Navi BB et al, submitted.

Limitations

- Retrospective studies that rely on administrative diagnostic codes for outcome assessments
- Lacked granular clinical data such as ECG and imaging findings, lab values, severity of outcomes, and medicines administered
- Excluded patients younger than 66 and those without Medicare insurance
- Unable to match on smoking or unmeasured factors so residual confounding possible

REGARDS

- <u>REasons for Geographic and RAcial</u> <u>Differences in Stroke study</u>¹
- NIH-funded, nationwide, population-based prospective cohort study with adjudicated ascertainment of stroke
- Between 2003 and 2007, 30,239 participants 45 years or older enrolled
- After baseline study visit, participants followed every 6 months for clinical outcomes

Link between Cancer and Stroke in REGARDS

- Analyzed REGARDS participants 66 years or older with Medicare coverage
- Participants with history of cancer or stroke excluded
- Time-dependent exposure was a new diagnosis of malignant cancer, identified through Medicare claims algorithms
- Participants followed from baseline REGARDS visit through 2013 for primary outcome of a neurologist adjudicated stroke
- Multivariable Cox regression used to evaluate the association between incident cancer and subsequent stroke while adjusting for potential confounders such as smoking
- Follow-up time modeled in discrete time periods to fulfill the proportional hazard assumption

Link between Cancer and Stroke in REGARDS

- 5,743 REGARDS participants met eligibility criteria
- 984 diagnosed with cancer during follow-up
- New cancer diagnosis strongly associated with subsequent stroke in the first month after cancer diagnosis (HR 5.1, 95% CI 1.9-13.8)
- Association even stronger after adjustment for demographics, region of residence, and vascular risk factors (HR 6.9, 95% CI 2.5-18.5)
- No significant association beyond one month; however, study underpowered and strong trends seen in 1 to 3 month period for high-risk cancer types, particularly lung, pancreatic, and colorectal cancers

Risk Factors for Stroke in Cancer Patients

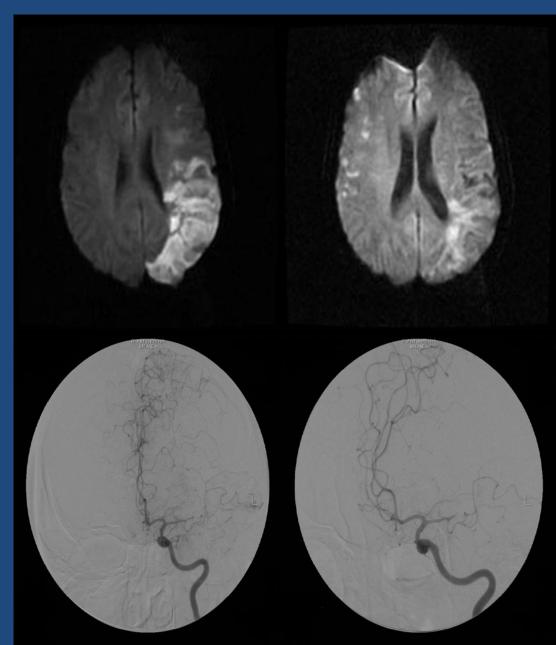
Not cancer-mediated¹

- Male gender
- Older age
- Vascular comorbidities

Cancer-mediated

- Active cancer, particularly advanced stage
 - Rarely, stroke is initial manifestation of cancer
- Recent chemotherapy
 - Platinum based therapy²
 - Anti-angiogenesis drugs³
 - Bisphosphonates and AF⁴
- Prior radiation⁵

¹Navi BB et al, Neurology 2014; ²Li SH et al, Clin Neurol Neurosurg 2006; ³Zuo PY et al, Plos One 2015; ⁴Wilkinson GS et al, J Clin Oncol 2010; ⁵De Bruin ML et al, J Natl Cancer Inst 2009.

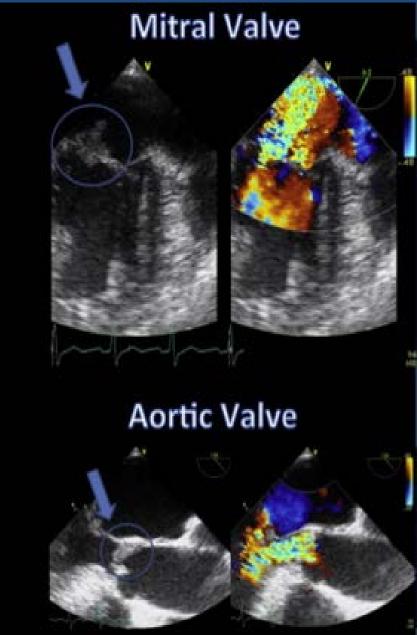

Ischemic Stroke Mechanisms in Cancer Patients

- Often unconventional (51%)¹
- Commonly related to properties of neoplasm or its treatment
- Frequently embolic appearing (54%)²

TCD Microemboli Analysis

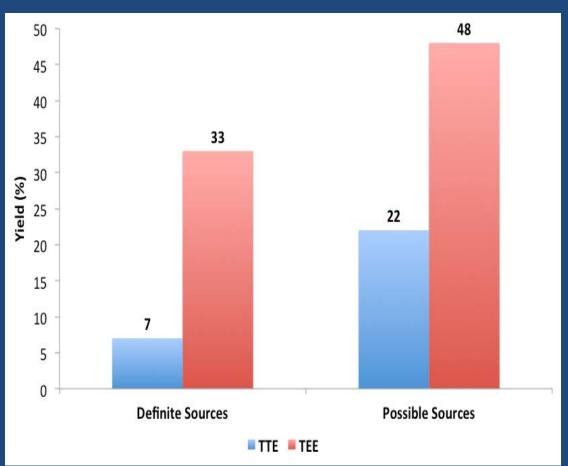
- Prospective TCD study of 74 active cancer patients with MCA distribution strokes¹
- Microemboli observed in 46% of overall cohort and 58% of those with unconventional stroke mechanisms
- Microemboli associated with high D-dimer levels and adenocarcinomas
- D-dimer levels decreased dramatically after a few days of anticoagulation

- 46 year old woman
- History of HTN, HL, smoking
- Presented w/ recurrent neurological symptoms over 1 month, some persistent
- Serial MRI showed recurrent, multifocal infarctions despite aggressive medical therapy
- NSTEMI also diagnosed
- Ultimately tissue obtained and diagnosis made



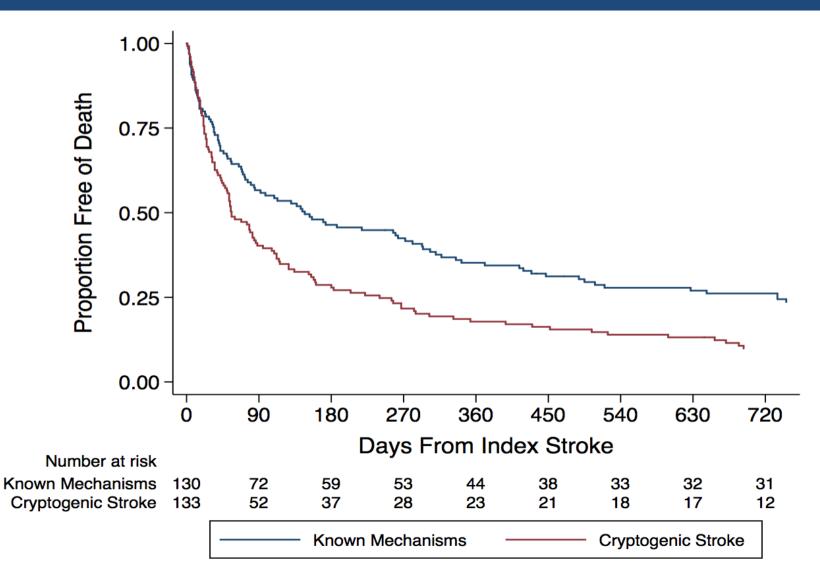
Nonbacterial Thrombotic Endocarditis

- Leading cause of symptomatic ischemic stroke in patients with active cancer¹
- Sterile, small platelet-fibrin vegetations on normal cardiac valves
- Lesions prone to embolization and typically present with embolic strokes (multiple vascular distributions)
- More common with advanced, metastatic disease but can herald cancer diagnosis
- Because of small size, very difficult to definitively diagnose with echo, though TEE superior to TTE²


Pathogenesis of NBTE

- Multifactorial and incompletely understood
- Increased cytokines such as TNF and interleukin-1
- Excessive platelet and coagulation factor activity
- Increased circulating tissue factor and cancer microparticles
- Blood flow and shear forces likely contribute as well because vegetations generally form in high flow areas on valve leaflets

Echo Yield in Cancer Patients with AIS and Suspected Cardioembolism


- 220 patients with cancer and AIS evaluated by echo¹
- 92 with suspected cardioembolism by neuroimaging had TTE and 21 had TEE
- 4 (4%) vegetations seen on TTE, all from NBTE
- 6 (29%) vegetations seen on TEE, 4 from NBTE, 2 infectious

Cryptogenic Stroke in Cancer Patients

- 51% cryptogenic rate in largest clinical series¹
- Metastatic disease, infarcts in multiple vascular distributions, and high D-dimer levels more common in cryptogenic group²
- <u>Conclusion</u>: many cryptogenic strokes likely from unconfirmed NBTE

Survival in Cryptogenic Strokes

Navi BB et al, Stroke 2015.

Atherosclerosis

- 35% of ischemic strokes in patients with active cancer¹
- Likely most common cause in those whose cancer is in remission
- Prior radiation accelerates disease^{2,3}
 - ICA stenosis with head and neck cancers
 - Great vessel stenosis and cardiomyopathy with breast cancer and lymphoma
 - CNS vasculopathy with brain tumors

Other Causes of Ischemic Stroke in Cancer Patients

- Venous infarction¹
 - Hypercoagulability
 - Neoplastic compression (breast, meningioma)
- Paradoxical embolism
- Tumor embolism
- Increased blood viscosity (myeloma)
- Septic emboli
- Vasculopathy
 - Infectious (VZV, aspergillus)
 - Neoplastic (Hodgkin lymphoma)
 - Radiation (brain tumors)
- Arterial compression (GBM)

Recurrent Stroke Risk

- Retrospective cohort study of 263 patients with active systemic cancer and MRI-confirmed AIS at MSK from 2005 to 2010¹
- Recurrent thromboembolism rate of 34% (117 in 90 patients) despite median survival of 84 days
 - 90-day KM RTE rate 31% (~15% w/ competing risk analysis)
 - 90-day KM stroke rate 13%
- No difference in RTE rates with AC as compared with AP therapy (HR 1.19, 95% CI 0.72-1.97)
 - Confounding by indication bias?
- High recurrent stroke rate in cancer patients confirmed in several other populations^{2,3}

Predictors of RTE

- Multivariable logistic regression
- Several a priori selected clinical factors
- Predictors
 - Adenocarcinoma (OR 1.65, 95% CI 1.02-2.68)
 - Suspected or confirmed NBTE (OR 1.53, 95% CI 0.96-2.44)
 - Recent chemotherapy (OR 1.33, 95% CI 0.87-2.03)

Treatment—Ischemic Stroke

- Often unconventional
- May depend on underlying stroke mechanism
- Very little evidence to guide decisions

Recanalization Therapy for AIS

- Cancer patients excluded from trials, but not an absolute contraindication
- Recent data suggests that IV tPA can be safe
 - 1/18 (6%) patients with active cancer treated with IV tPA for stroke had sICH; 61% had systemic metastases¹
 - 4.1% ICH rate among 641 cancer patients treated with TPA for stroke in NIS²
- Thrombolysis should be avoided in malignant brain tumor patients, though reports exist³
- Endovascular therapy may be beneficial in select cases⁴

¹Masrur S et al, J Stroke Cerebrovasc Dis 2011; ²Murthy SB et al, Stroke 2013; ³Murthy SB et al, J Clin Neuroscience 2015; ⁴Merkler AE et al, Navi BB, Neurohospitalist 2014.

Secondary Stroke Prevention

- Limited and inconclusive observational data
- No published specific trials to guide therapy
- No AAN or AHA/ASA guidelines
- Therapy often overshadowed by systemic illness

Secondary Stroke Prevention

- Anticoagulation with low-molecular weight heparin?
 - Pros
 - Anticoagulants, especially LMWH, decrease D-dimer levels and TCD-microemboli^{1,2}
 - Extrapolation from CLOT/CATCH studies^{3,4}; reduces risk of VTE
 - Cons
 - Increased risk of bleeding, which may outweigh any incremental AIS risk reduction (i.e., stroke trials in non-cancer patients)⁵
 - Expensive, burdensome, difficult to administer
- Anti-platelets?
 - Pros
 - Standard of care for most strokes (Level 1 evidence)
 - Excellent safety profile; easy to administer
 - Cons
 - May not address cancer-mediated hypercoagulability

¹Seok JM et al, Ann Neurol 2010; ²Jang H et al, J Oncology 2015; ³Lee AY et al, N Engl J Med 2003; ⁴Lee AY et al, JAMA 2015; ⁵Bath PM et al, Lancet 2001.

TEACh Study: <u>Trial of Enoxaparin versus</u> <u>Aspirin in Cancer Patients with Stroke</u>

- Multi-center, open-label, pilot, feasibility and safety randomized trial¹
- Patients with active systemic cancer and MRI-confirmed AIS within past 4 weeks at MSK, Cornell, and Columbia
- Randomized to 6 months of SQ enoxaparin or PO ASA
 Stratified by adenocarcinoma histology
- Clinical visits at 1, 3, and 6 months, and blood work at 2 and 4 weeks
- Primary aims are to determine if a randomized trial comparing AC to AP therapy is feasible in patients with cancer and AIS and to obtain a preliminary safety profile for both treatments
- Enrolled target of 20 patients; follow-up phase will be completed this month

¹http://clinicaltrials.gov/ct2/show/study/NCT01763606?term=cancer+and+stroke&rank=1.

Hemorrhagic Stroke in Cancer Patients

Mechanisms—Hemorrhagic Stroke

- Unique causes predominate; 33% multifactorial¹
- Often direct result of tumor or its treatment
- Etiology is closely linked to tumor type

ICH and SAH in Cancer Patients

- Retrospective cohort study of 208 patients with ICH or SAH from 2000 to 2008 at MSK
- 181 ICH and 46 SAH
- 41% had multiple foci of hemorrhage
- 68% had solid tumors, 16% primary brain tumors, and 16% hematopoietic tumors
- Presentation was comparable to community setting with headache, hemiparesis, and encephalopathy

Intratumoral Hemorrhage

- Most common cause of ICH in patients with cancer (61%)¹
- Melanoma and lung cancer are the most common solid tumor offenders
 - High prevalence, frequent brain metastases, vascular lesions
- GBM and oligodendroglioma are the most common primary brain tumors to bleed
 – Retiform type capillaries²
- XRT can precipitate intratumoral hemorrhage³

Coagulopathy

- 2nd most common cause of ICH or SAH in patients with cancer (46%)¹
- Usually occurs with hematological cancers
- May be from platelet or clotting factor dysfunction or deficiency
- Often a result of chemotherapy and/or radiation
- Hemorrhages are often diffuse and in multiple intracranial compartments

Hypertension

- Only accounts for 5-8% of ICH in cancer patients^{1,2}
- Associated with VEGF inhibitors
- PRES may result from calcineurin inhibitors after transplantation

Treatment—Hemorrhagic Stroke

- Should conform to standard guidelines^{1,2}
- Correct any coagulopathy

 Avoid recombinant factor VIIA³
- ICP management
- Blood pressure and glucose control
- Management of secondary complications

Treatment—Hemorrhagic Stroke

- Unique considerations¹
 - Steroids for ITH
 - Consider resection and/or XRT for ITH
 - All-trans-retinoic acid for DIC from APML
 - Leukopharesis and chemo for leukostasis
 - Antibiotics for mycotic aneurysms; XRT or chemo for neoplastic aneurysms

Conclusions

- Short-term risk of stroke markedly increased with new cancer diagnoses
- Cancer and stroke intricately linked
- Stroke mechanisms in cancer patients are unique and often related to properties of the neoplasm or its treatment
- Treatment is often unorthodox and based on theory, not (great) evidence
- Long-term prognosis is governed by the underlying cancer

Questions?

CORNELL

- Cos ladecola, MD
- Matt Fink, MD
- Hooman Kamel, MD
- Alan Segal, MD
- Alex Merkler, MD
- Natalie Cheng, MD
- Jordan Reichmann, MD
- Neal Parikh, MD
- Jackie Burch, MD
- Ryna Matias, MD
- Carla Sherman
- COLUMBIA
 - Mitch Elkind, MD, MS
 - Randy Marshall, MD, MS

- MSKCC
 - Lisa DeAngelis, MD
 - Kathy Panageas, PhD
 - Sam Singer, MD
 - Anne Reiner
 - Jacqueline Stone, MD
 - Renata Barradas-Panchal
 - Dylan Bobrow
 - Ben Weill
 - Julia Wolfe
- REGARDS
 - George Howard, DrPH
 - Virginia Howard, PhD
 - Paul Muntner, PhD
 - Mary Cushman, MD, MSc
 - Hong Zhao, MSPH
 - Suzanne Judd, PhD
 - Susan Lakoski, MD
 - Elsayed Soliman, MD