New Clinical Trials For ICH: MISTIE III

Minimally invasive techniques for hemorrhagic stroke

Wendy Ziai, MD, MPH Daniel F. Hanley, MD Johns Hopkins Medical Institutions Dept. of Neurology Division of Brain Injury Outcomes

MISTIE III

- Sponsored by NINDS, R01NS046309
- Donations
 - Genentech North America
 - Boehringer Ingelheim Europe
- IND #8523 (intracerebral use of rt-PA)

StrokeNet-MISTIE III Collaboration

- MISTIE III supports the StrokeNet Network
- MISTIE III is sharing its experience with StrokeNet
- 2/3 MISTIE III leadership are StrokeNet faculty / investigators

StrokeNet – MISTIE Collaboration

Percent	# Stroke Net Centers	Stroke Net Status
38%	16/42	ACTIVE SN primary centers or satellites
52%	28/54	PROJECTED August active
22%	4	8/37 SN ENROLLMENTS
	8	Nonparticipating SN sites: resources, conflicts, regulatory barriers

10-30 cases per 100,000/Yr. 2 million ICHs annually worldwide

Surgical Clot Removal Questions & Strategies

- 1. Does surgical intervention help?
- 2. When to operate?
- 3. What type of surgery?
 - Craniotomy
 - Pro: Direct visualization for removal & hemostasis
 - Con: Requires corticotomy and cautery
 - MIS
 - Pro: No cortex injury, no cautery
 - Con: No direct visualization
- 4. How much clot should be removed?
- 5. Which patients benefit from which intervention?

Meta-analysis: 15 ICH Surgical Trials* (Death or Disability)

Significant advantage for surgery: OR=0.74

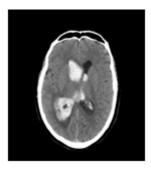
Significant heterogeneity by location, by surgery type

Lobar intracerebral hemorrhage and no IVH: No heterogeneity No benefit: p=0.07

A				
	Surgery	Control		Peto odds ratio (95% Cl)
McKissock et al ¹⁵ (1961)	71/89	60/91		2.00 (1.04-3.86)
Auer, et al ¹¹ (1989)	28/50	37/50		0.46 (0.20-1.04)
Juvela, et al¹⁴ (1989)	25/26	21/26		4-39 (0-81-23-65)
Batjer, et al12 (1990)	6/8	11/13	←	0.55 (0.06-4.93)
Chen, et al ¹⁹ (1992)	40/64	31/62	_	1.66 (0.82-3.34)
Morgenstern, et al ¹⁶ (1998)	9/15	11/16	_	0.69 (0.16-2.94)
Zuccarello, et al ¹⁷ (1999)	4/9	7/11	←	0.48 (0.09-2.69)
Chen, et al ¹³ (2001)	86/263	97/230		0-67 (0-46-0-96)
Teernstra, et al ¹⁸ (2001)	33/36	29/33		1·51 (0·32–7·12)
Hosseini, et al ³² (2003)	0/1	0/1		Not estimable
Hattori, et al ³³ (2004)	60/121	82/121		0-47 (0-28-0-79)
Mendelow, et al ²⁰ (2005)	346/468	378/496		0.89 (0.66–1.19)
Pantazis, et al ³⁴ (2006)	36/54	49/54	← ∎	0.24 (0.10-0.60)
Wang, et al ³⁵ (2009)	87/194	120/181	— — —	0-42 (0-28-0-63)
Mendelow, et al (2013)	174/297	178/286		0.86 (0.62–1.20)
Total (95% CI)	1695	1671	•	0.74 (0.64–0.86)
В			Favours surgery Favours control	
	Surgery	Conservative		Fixed odds ratio (95% Cl)
Lobar haematomas with no intrav				
	entricular haemorrh	age (assuming Auer intrav	ventricular	
haemorrhage distributed evenly b			ventricular	
,			ventricular	0.31 (0.08–1.15)
Auer, et al ¹¹ (1989)	etween treatment g	roups)	/entricular	0·31 (0·08–1·15) 49·00 (0·74–3236·99)
Auer, et al ¹¹ (1989) Iuvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999)	etween treatment g 8/21	12/18	ventricular	- , -,
Auer, et al ¹¹ (1989) Iuvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999)	etween treatment g 8/21 3/3	12/18 0/3	ventricular	49.00 (0.74-3236.99)
Auer, et al ¹¹ (1989) Iuvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001)	etween treatment g 8/21 3/3 1/3	12/18 0/3 1/3	ventricular	49·00 (0·74-3236·99) 1·00 (0·03-29·81)
Auer, et al ¹¹ (1989) luvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teernstra, et al ¹⁸ (2001)	etween treatment g 8/21 3/3 1/3 7/11	roups) 12/18 0/3 1/3 9/13	ventricular	49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27)
Auer, et al ¹¹ (1989) Juvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teernstra, et al ¹⁸ (2001) Mendelow, et al ²⁰ (2005)	etween treatment g 8/21 3/3 1/3 7/11 15/16	roups) 12/18 0/3 1/3 9/13 7/9	ventricular	49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27) 4-29 (0-33-55-59)
Auer, et al ¹¹ (1989) Juvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teernstra, et al ¹⁸ (2001) Mendelow, et al ²⁰ (2005) Mendelow (STICH II), et al (2013)	etween treatment g 8/21 3/3 1/3 7/11 15/16 66/112	roups) 12/18 0/3 1/3 9/13 7/9 90/128	ventricular	49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27) 4-29 (0-33-55-59) 0-61 (0-36-1-03)
Auer, et al ¹¹ (1989) luvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teernstra, et al ¹⁸ (2001) Mendelow, et al ⁷⁰ (2005) Mendelow (STICH II), et al (2013) Subtotal (95% CI)	etween treatment g 8/21 3/3 1/3 7/11 15/16 66/112 190/297 463	roups) 12/18 0/3 1/3 9/13 7/9 90/128 194/286	ventricular	49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27) 4-29 (0-33-55-59) 0-61 (0-36-1-03) 0-84 (0-60-1-19)
Auer, et al ¹¹ (1989) Juvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teernstra, et al ¹⁸ (2001) Mendelow, et al ⁷⁰ (2005) Mendelow (STICH II), et al (2013) Subtotal (95% CI) Total events: 290 (surgery), 313 (cor	etween treatment g 8/21 3/3 1/3 7/11 15/16 66/112 190/297 463 nservative)	roups) 12/18 0/3 1/3 9/13 7/9 90/128 194/286	ventricular	49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27) 4-29 (0-33-55-59) 0-61 (0-36-1-03) 0-84 (0-60-1-19)
Auer, et al ¹¹ (1989) Juvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teernstra, et al ¹⁸ (2001) Mendelow, et al ⁷⁰ (2005) Mendelow (STICH II), et al (2013) Subtotal (95% CI) Total events: 290 (surgery), 313 (cor Test for heterogeneity: χ ² =8-43, df=0	etween treatment g 8/21 3/3 1/3 7/11 15/16 66/112 190/297 463 nservative) 6 (p=0-21), l ² =28-8%	roups) 12/18 0/3 1/3 9/13 7/9 90/128 194/286	ventricular	49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27) 4-29 (0-33-55-59) 0-61 (0-36-1-03) 0-84 (0-60-1-19)
Auer, et al ¹¹ (1989) Juvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teernstra, et al ¹⁸ (2001) Mendelow, et al ⁷⁰ (2005) Mendelow (STICH II), et al (2013) Subtotal (95% CI) Total events: 290 (surgery), 313 (cor Test for heterogeneity: χ ² =8-43, df=0	etween treatment g 8/21 3/3 1/3 7/11 15/16 66/112 190/297 463 nservative) 6 (p=0-21), l ² =28-8%	roups) 12/18 0/3 1/3 9/13 7/9 90/128 194/286		49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27) 4-29 (0-33-55-59) 0-61 (0-36-1-03) 0-84 (0-60-1-19)
haemorrhage distributed evenly b Auer, et al ¹¹ (1989) Juvela, et al ¹⁴ (1989) Zuccarello, et al ¹⁷ (1999) Chen, et al ¹³ (2001) Teemstra, et al ¹⁸ (2001) Mendelow, et al ²⁰ (2005) Mendelow (STICH II), et al (2013) Subtotal (95% CI) Total events: 290 (surgery), 313 (cor Test for heterogeneity: χ^2 =8-43, df=1 Test for overall effect: Z=1-81 (p=0-0	etween treatment g 8/21 3/3 1/3 7/11 15/16 66/112 190/297 463 nservative) 6 (p=0-21), l ² =28-8%	roups) 12/18 0/3 1/3 9/13 7/9 90/128 194/286	ventricular	49-00 (0-74-3236-99) 1-00 (0-03-29-81) 0-78 (0-14-4-27) 4-29 (0-33-55-59) 0-61 (0-36-1-03) 0-84 (0-60-1-19)

*Includes STICH I/II

Lancet. 2013 Aug 3;382(9890):397-408


Current BIOS Phase III Trials

Minimally Invasive Surgery plus rt-PA for Intracerebral Hemorrhage Evacuation

Clot Lysis Evaluation of Accelerated Resolution of Intraventricular Hemorrhage

Minimally Invasive Hemorrhage Evacuation

CONCEPT

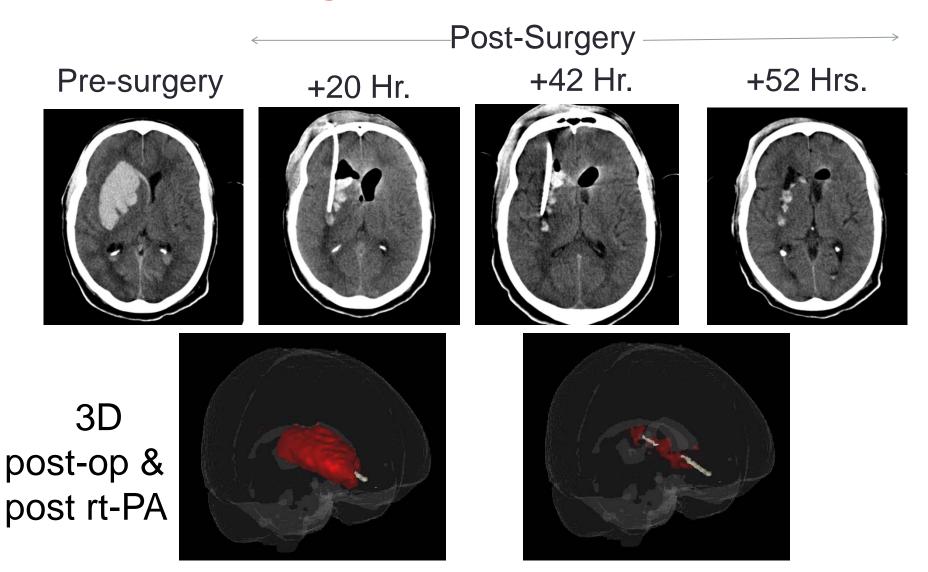
- Minimally invasive access
- Single trajectory for tissue injury
- Precision-guided, aspiration/evacuation

APPROACHES:

- Mechanical clot disruption
- Endoscopic removal
- Ultrasound
- Injection of thrombolytic

365-Day Outcome & Cost Model

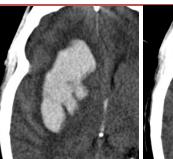
MISTIE II: A Phase II Proof-of-Concept Trial

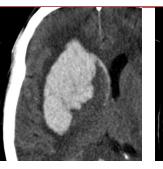


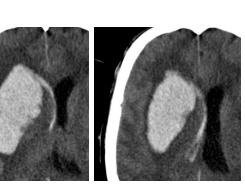
MISTIE Phase II – Overall Trial Goal

To fully test the novel idea that...

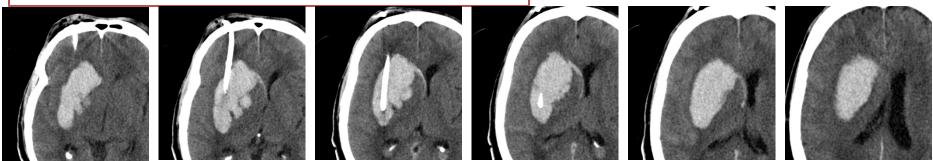
"Clot-size <u>reduction</u> decreases mortality and <u>increases</u> good outcomes"


Surgical Intervention

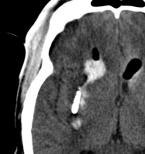

102-367

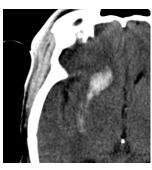

Stability Volume: 53.93 EOT Volume: 7.08 % Reduction: 86.87 Catheter Score: 116.5

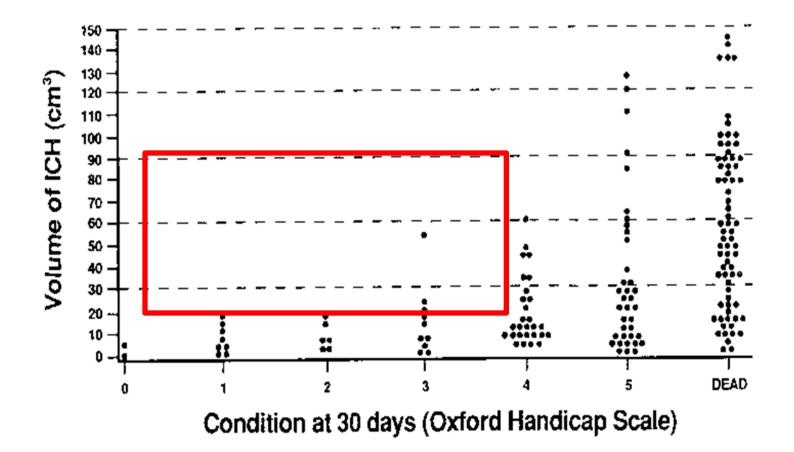
Stability CT Scan 04-Mar-10 8:41



Post-Surgery CT Scan 05-Mar-10 17:21




End of Treatment Scan 07-Mar-10 10:20



Effect of ICH Volume on Mortality

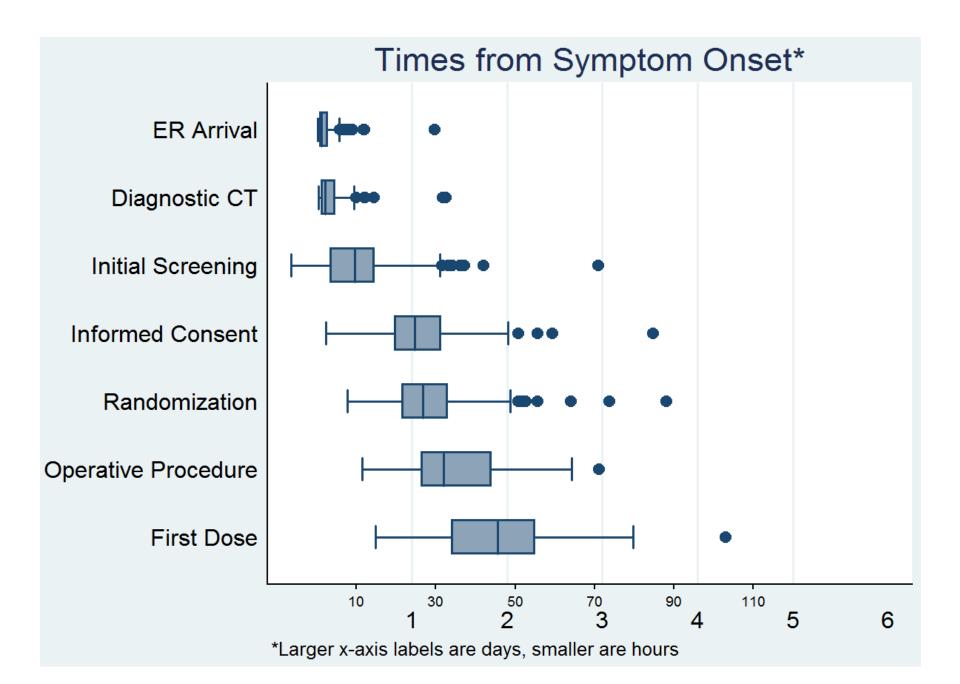
Broderick et. al Stroke. 1993;24:987-993

Key I/E Criteria

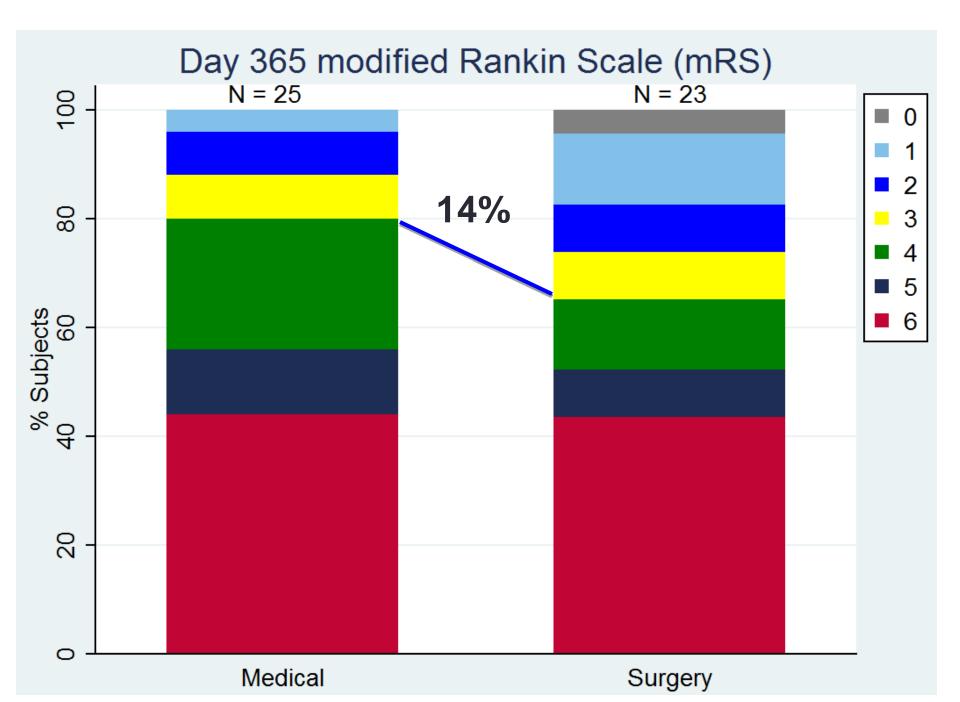
Exclusion

- Infratentorial ICH
- Vascular malformation or brain tumor
- Irreversibly impaired brainstem function

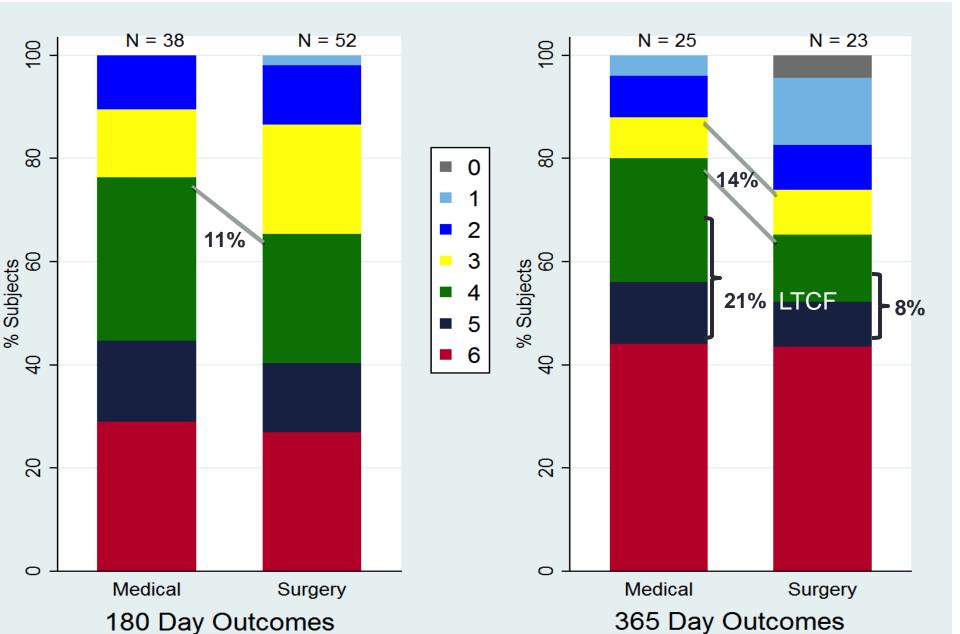
Inclusion


- >Age 18-75
- >GCS \leq 13 or NIHSS \geq 6
- Spontaneous supratentorial ICH <u>></u> 25cc
- Stable clot at second CT scan performed <a> 6 hours after diagnosis

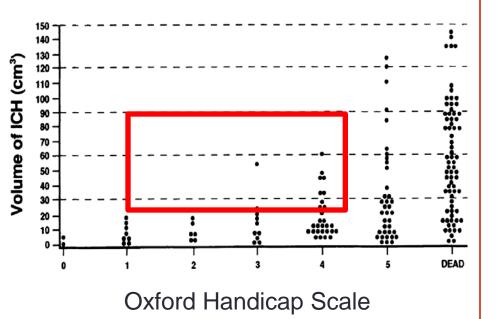
Baseline Demographics


Characteristic	Medical N=42	Surgical N=54	Total N=96
Mean Age (SD)	61.1 (12.3)	60.7 (11.0)	60.9 (11.5)
Male	66.7%	64.8%	65.6%
Race			
Caucasian	54.8%	55.6%	55.2%
African American	26.2%	33.3%	30.2%
Asian or Pacific Islander	4.8%	3.7%	4.2%
Hispanic	11.9%	7.4%	9.4%
HX of HTN	81.0%	90.7%	86.5%
HX of Diabetes	26.8%	25.9%	26.3%
HX of Seizure	12.2%	14.8%	13.7%
HX of ETOH	17.5%	31.5%	25.5%
HX of Tobacco	7.1%	31.5%	20.8%
HX of Cocaine	7.1%	7.4%	7.3%

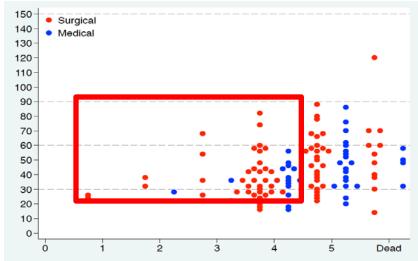
ER Presentation


Presen	ting Parameter X (SD)	Medical N=42	Surgical N=54	Total N=96
ER Presentation SBP		186.7 (34.1)	186.4 (33.0)	186.5 (33.3)
ER Presentation DBP		101.9 (20.4)	106.8 (27.7)	104.6 (24.7)
ER Presentation MAP		130.2 (22.8)	133.2 (27.4)	131.9 (25.4)
ER Presentation GCS Total		11.6 (3.2)	11.4 (3.2)	11.5 (3.2)
Diagnostic ICH Volume		34.0 (15.8)	43.3 (22.5)	39.2 (20.3)
Diagnostic IVH Volume		1.6 (4.1)	4.3 (8.9)	3.2 (7.3)
Clot Loca	tion			
	Lobar	35.7%	33.3%	34.4%
	Deep	64.3 %	66.7 %	65.6%

What we learned about recovery

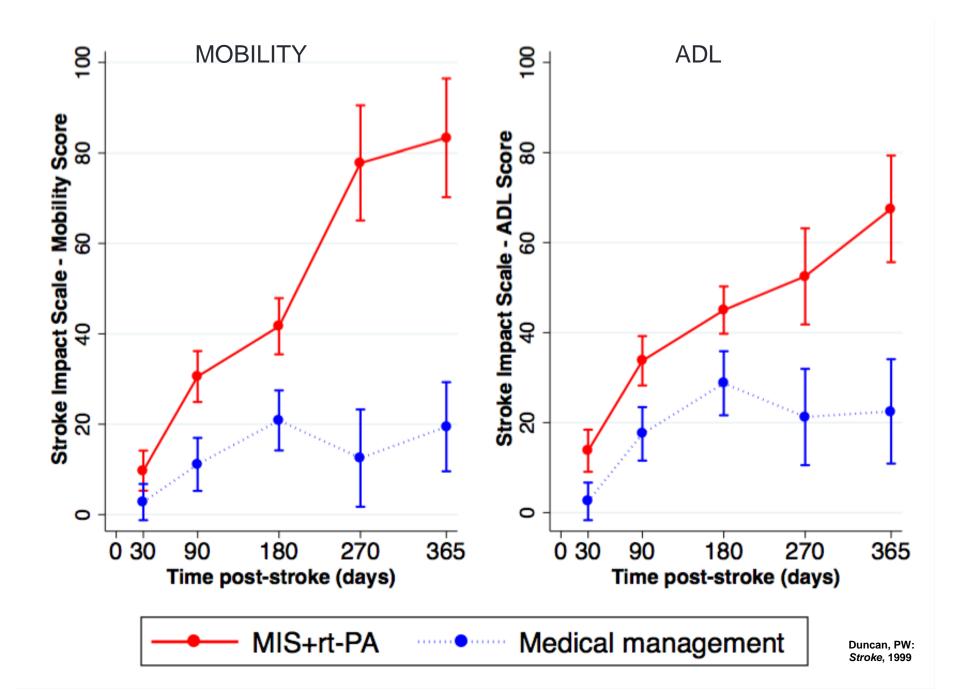


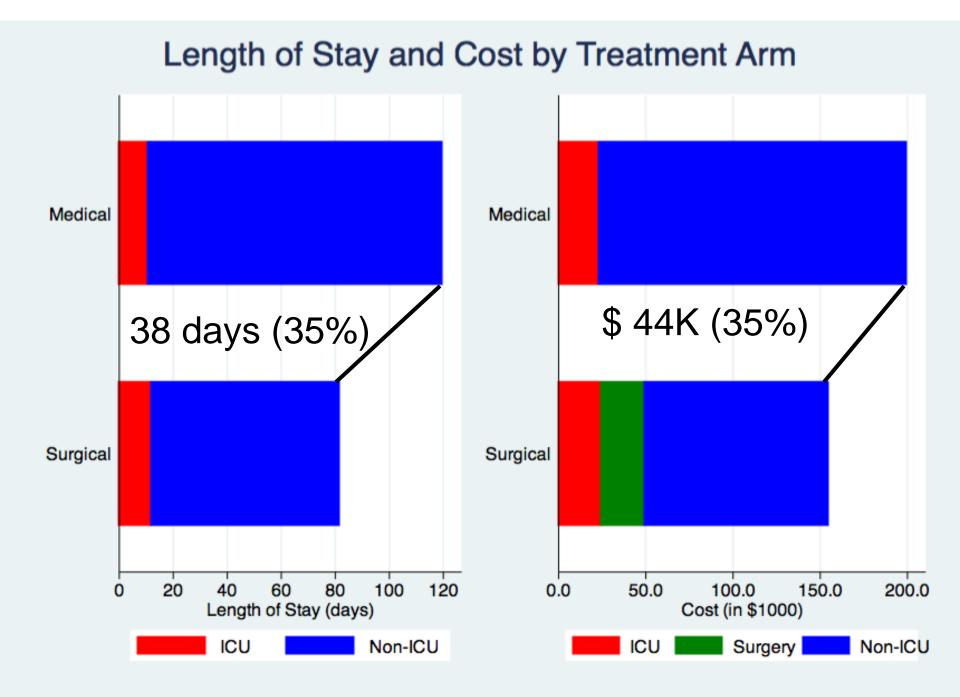
180 & 365-Day mRS



30-Day Outcomes Change With MIS+rt-PA

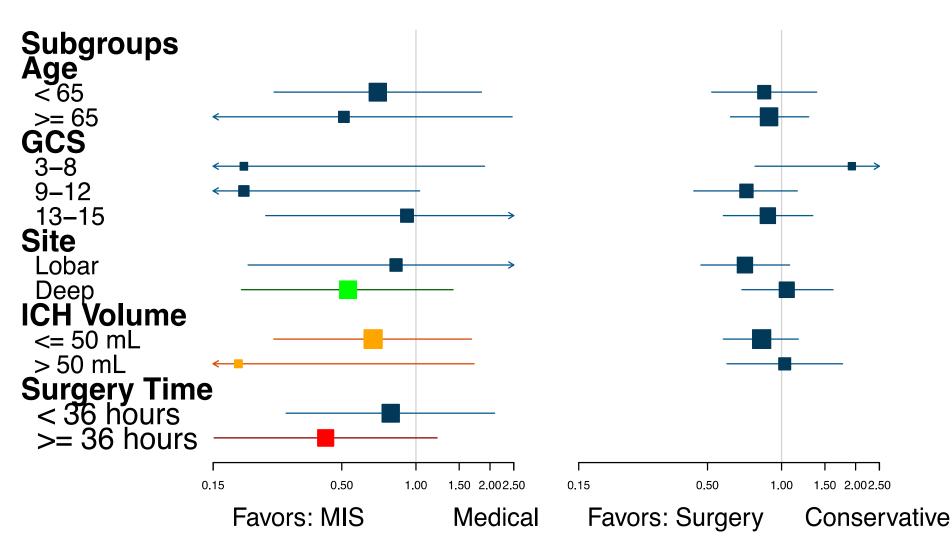
Cincinnati 1988

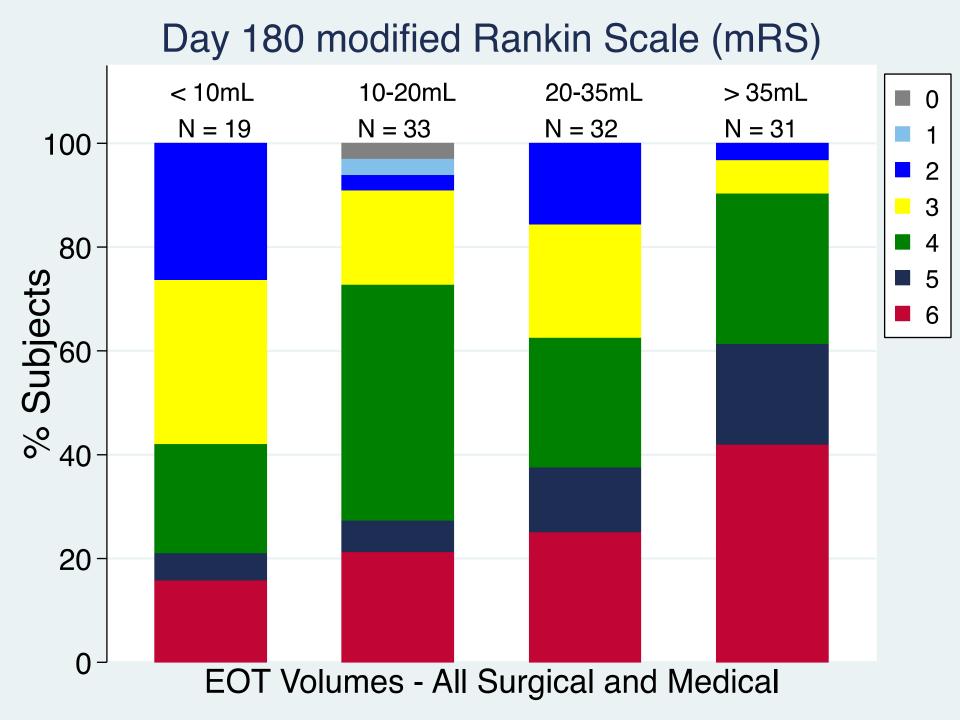



Broderick et. al Stroke. 1993;24:987-993

mRankin Scale

MISTIE II 2013





Factors Affecting Functional Outcome ITT (n= 83)

	Univariate Analysis	Multivaria	ite Models
ICH Severity Parameters	Odds Ratio of mRS>3 (p-value)		
		Model 1	Model 2
Age per 1 year	1.05 (0.029)	1.08 (0.007)	1.09 (0.004)
Stability ICH per 10 cc	1.52 (0.009)	1.10 (0.581)	1.01 (0.971)
Enrollment Total GCS Score	0.63 (<0.001)	0.59 (<0.001)	0.57 (<0.001)
Surgical vs. Medical arm	0.67 (0.407)	NA	NA
End-of-treatment <pre>< 15 ml</pre> ~ 3-day volume vs. >15 ml	0.33 (0.038)	NA	0.27 (0.062)

Subgroup treatment effect: odds mRS >3 MISTIE STICH

What this means

The greater the reduction in clot size the better the patient outcome.

Volume reduction matters!

MISTIE II – Benefits summary

Mechanism

- Reduction of clot burden
- "Saving tissue at risk"
- 2° injury occurs over days

Benefits

 <u>Most likely</u> MIS increases independence

 Appears to improve function & decrease cost

Upcoming MISTIE IM

On behalf of MISTIE III Trial, NIH/NINDS, and Genentech Inc., we would like to invite you to attend the

2014 MISTIE III Investigator-Coordinator Meeting

Who should attend?

PIs, Neurosurgeons, & Coordinators

When:

Where:

August 22-24, 2014 (Friday 6:30 PM –Sunday 3 PM)

Westin BWI 1110 Old Elkridge Landing Rd Linthicum Heights, MD 21090

MISTIE III Coordinating Center

Daniel F. Hanley Wendy Ziai Karen Lane Nichol McBee Steve Mayo Janet Mighty Andrew Mould Issam Awad Mario Zuccarello Kennedy Lees Claudia Moy Scott Janis

Study Chairman & Principal Investigator Medical Monitor **Project Director** Clinical Program Manager Emissary International Monitoring Pharmacy Manager Reading Center Manager Co-PI, Chicago Surgical Center Director Co-PI, Cincinnati Surgical Center Director University of Glasgow Outcomes Center Program Official, NIH/NINDS Project Scientist, NIH/NINDS

MISTIE III Data Management Center

Richard Thompson Marie Diener-West Michael Rosenblum Elizabeth Sugar Gayane Yenokyan Carol Thompson John Muschelli Josh Betz Andre Hackman Rachel Dlugash Malathi Ram Gwendolyn Clemens **PI**, Executive Director Senior Biostatistics Advisor Biostatistician, Study Design Unblinded Biostatistician Biostatistician, Outcomes Research Biostatistician **Biostatistician/Analyst** Biostatistician/Analyst Director, Data Informatics Services Core Senior Research Data Manager Data Manager Data Manager

