

NIH StrokeNet Network Meeting Los Angeles, CA 15-Feb- 2016

Joseph P. Broderick, MD

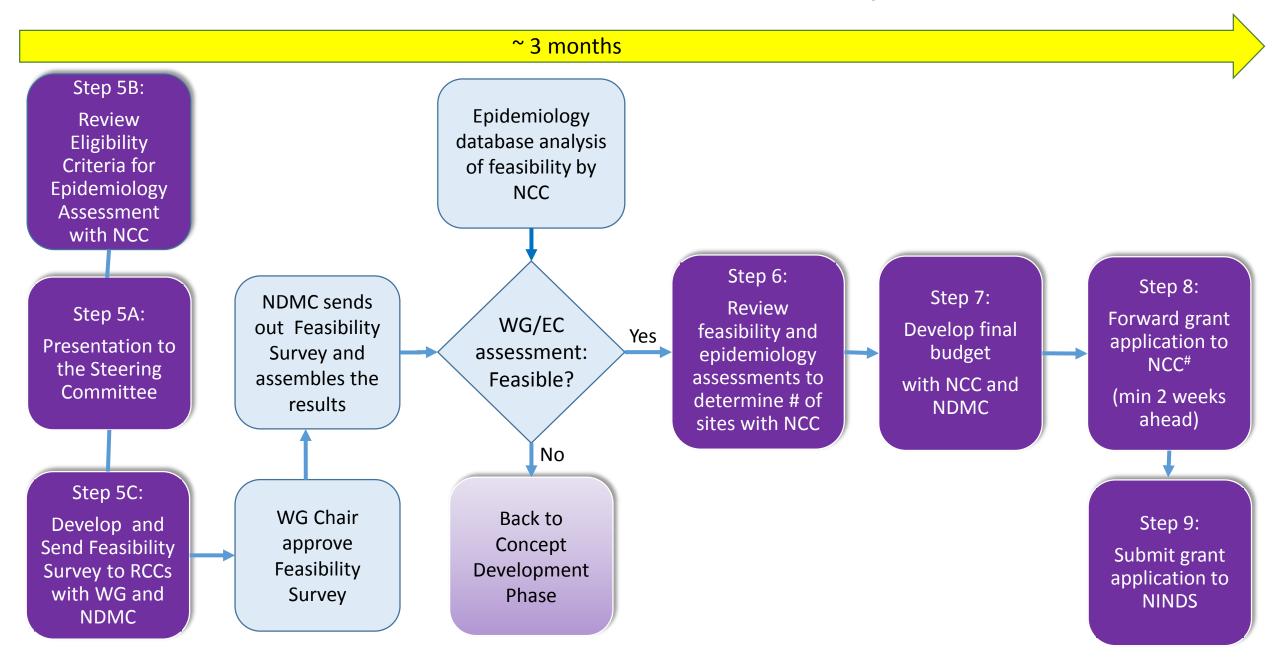
Department of Neurology and Rehabilitation Medicine
University of Cincinnati Neuroscience Institute, Comprehensive Stroke Center

Pl Interactions with NINDS and Proposal Process



NINDS Consideration and Approval of Concept (ESC)

- ➤ ESC Extramural Science Committee
 - Approves all NINDs initiatives and large proposals for submission, including all StrokeNet proposals
- ➤ Concepts are considered for NINDS priority and ability to pay
 - Budget estimate is important
 - Not a scientific review
- Factors considered in discussion:
 - Relevance to NINDS
 - Priority within portfolio/gaps in science
 - Overall cost


^{*} Contact at NINDS: Lupe Aquino (lupe.aquino@nih.gov); # Contact at NCC: Rose Beckmann (BECKMARE@ucmail.uc.edu); § See WG composition (last slide)

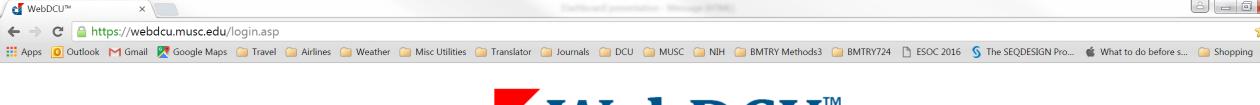
CONCEPT APPROVAL PHASE

~ 1-2 months (concept submission to approval at NINDS)

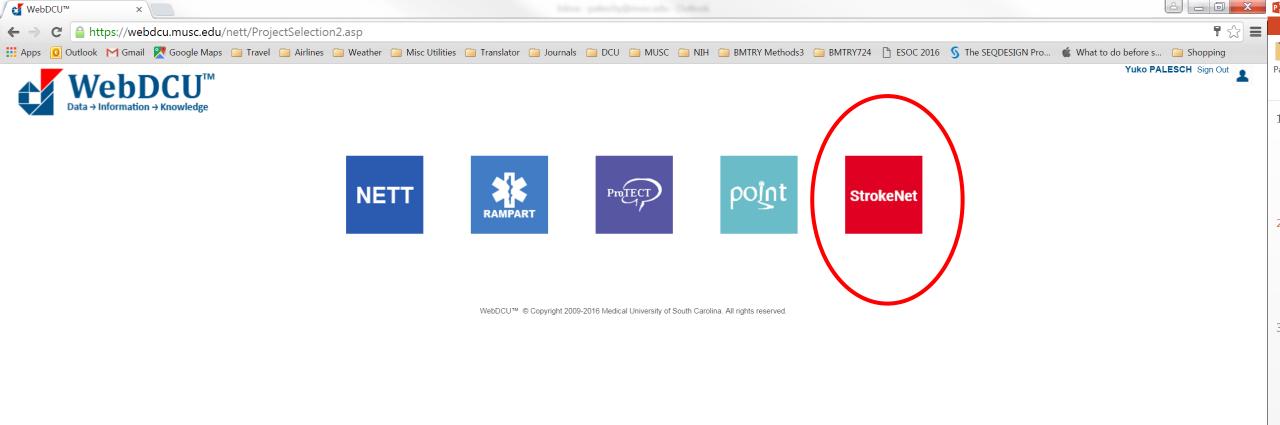
STROKENET: PROPOSAL DEVELOPMENT PHASE – Steps for the PI

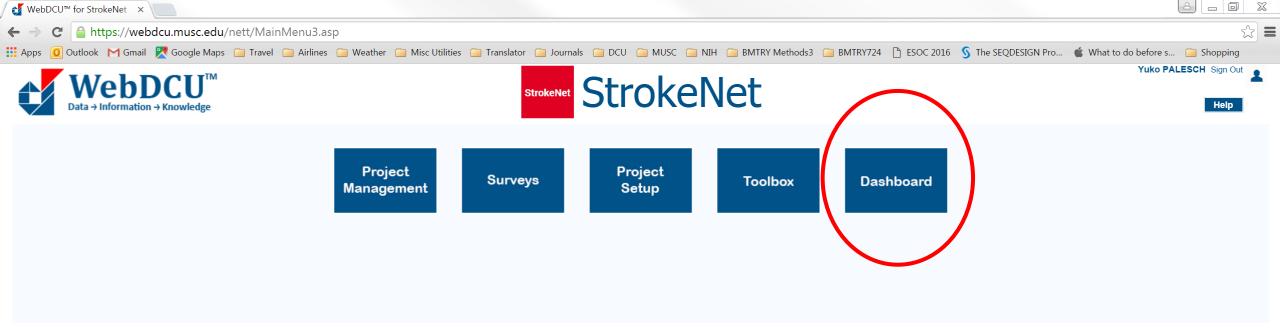
STROKENET: Working Groups

Acute Stroke	Primary and Secondary Prevention	Recovery and Rehabilitation
 Chair: Pooja Khatri University of Cincinnati Co-chair: Jeff Saver UCLA Renee' Martin NDMC Greg Albers Imaging Core David Liebeskind Imaging Core TBD Minority Recruitment and Retention Bill Barsan University of Michigan (ad hoc NETT member) Lee Schwamm Massachusetts General Hospital Ed Jauch Medical University of South Carolina Brett Meyer UC San Diego Phil Scott University of Michigan Jay Mocco Mt. Sinai School of Medicine – (#2) Cathy Sila Case Western Reserve University School of Medicine Wade Smith UC San Francisco Azam Ahmed University of Wisconsin Michel Torbey The Ohio State University Coordinator: Kiva Schindler Emory University 	 Chair: Tom Brott Mayo Clinic Jacksonville Co-Chair: Ralph Sacco University of Miami School of Medicine Sharon Yeatts NDMC Colin Derdeyn Imaging Core Steve Warach Imaging Core Bernadette Boden-Albala PhD. Mt. Sinai School of Medicine/New York City Collaborative Minority Recruitment and Retention Amy Towfighi USC/UCLA Scott Kasner University of Pennsylvania Kamakshi Lakshminarayan University of Minnesota David Tirschwell University of Washington Shyam Prabhakaran Northwestern University Enrique Leira University of Iowa Marc Chimowitz Medical University of South Carolina Natalia Rost Massachusetts General Hospital Coordinator: Glenn Schubert University of Washington 	 Chair: Steve Cramer UC Irvine Co-chair: Steve Wolf PhD Emory University NINDS representative: Daofen Chen, PhD Caitlyn Ellerbe NDMC Max Wintermark Imaging Core TBD Minority Recruitment and Retention Ron Lazar Columbia University Alex Dromerick The Medstar Research Institute Larry Wechsler University of Pittsburgh Sean Savitz University of Texas at Houston Lorie Gage Richards University of Utah Maarten Lansberg Stanford University Andrew Grande University of Minnesota Elliot Roth Northwestern University Harold Adams University of Iowa Kari Dunning University of Cincinnati (ad hoc) Coordinator: Mary Pautler University of Utah



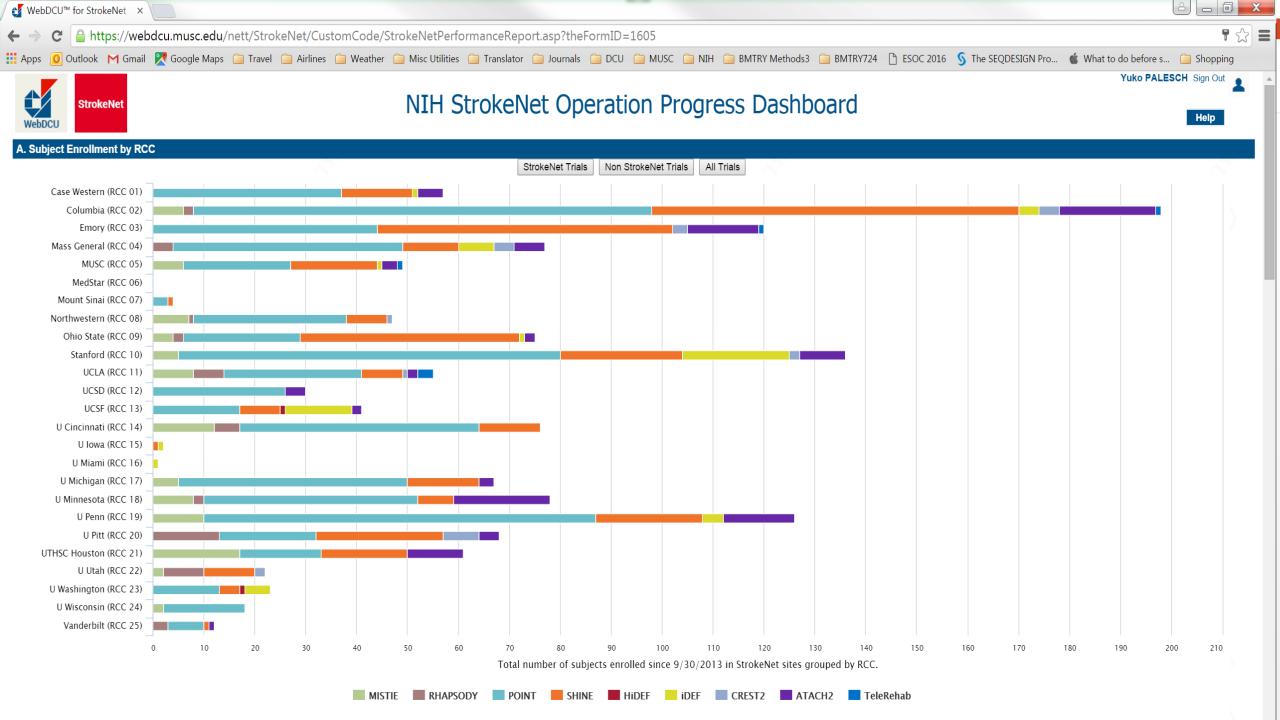
WebDCU StrokeNet Dashboard - Demo

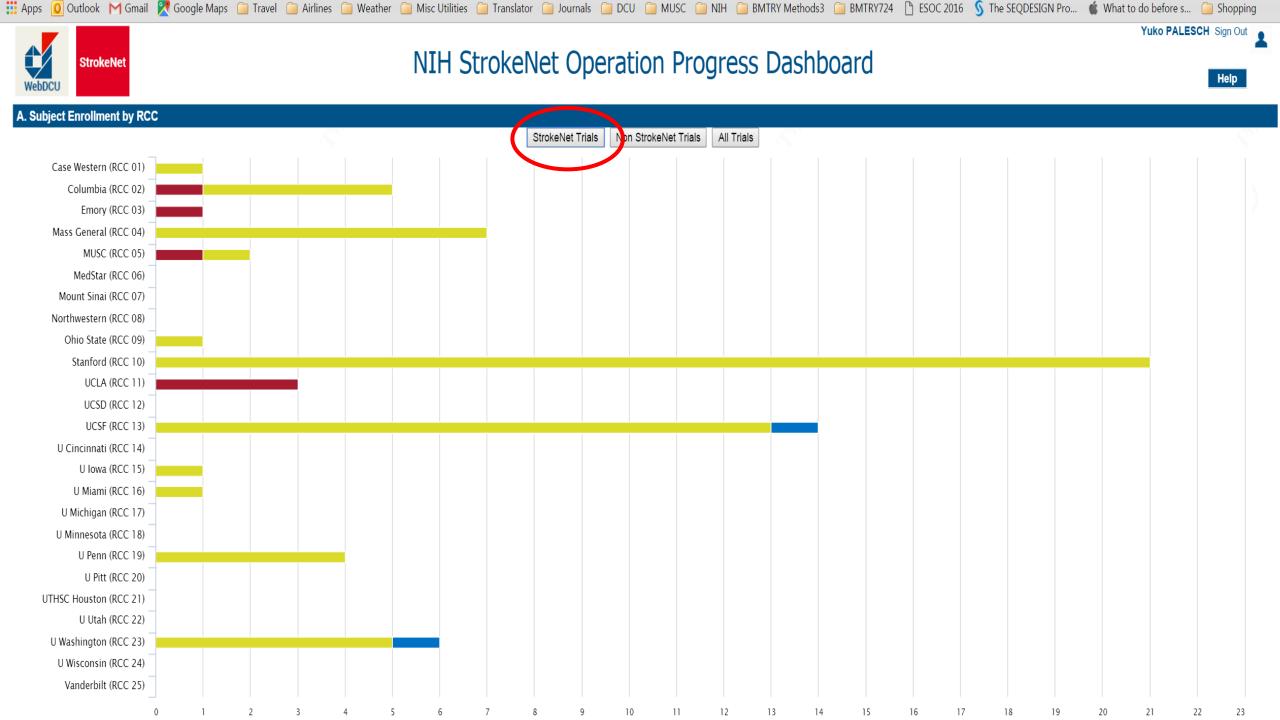



Email		
Password		
	Sign In	

WebDCU™ is a web based clinical trial management system developed by the Data Coordination Unit at the Medical University of South Carolina. WebDCU™ Copyright 2009-2016 MUSC. All rights reserved.

Go to https://webdcu.musc.edu/login.asp




S

Full Expanded Menu

WebDCU™ © Copyright 2009-2016 Medical University of South Carolina. All rights reserved.

C. RCC Project Operation Summary

		Enro	ollment Retention			Regula	atory Do	cument Collection			Case Repo	rt Form Collection
RCC	Enrolled No	ot Retaine	d %	RCC	Collected	Required O	utstandii	ng %	RCC	Submitted	Outstanding	%
1 Ohio State	69	0	100	1 U Utah	229	116	0	100	1 U Wisconsin	429	0	100
2 Case Western	57	0	100	2 U Cincinnati	4388	3211	18	99.6	2 Mount Sinai	108	0	100
3 UTHSC Houston	n 44	0	100	3 U Michigan	4002	2244	26	99.4	3 U Miami	47	0	100
4 MUSC	43	0	100	4 U Minnesota	3913	1410	28	99.3	4 U Minnesota	1983	8	99.6
5 UCSD	30	0	100	5 U Penn	4093	1368	47	98.9	5 UCSF	1688	8	99.5
6 Vanderbilt	9	0	100	6 Emory	2737	974	30	98.9	6 UCLA	1084	5	99.5
7 Mount Sinai	4	0	100	7 MUSC	1304	430	15	98.9	7 Northwestern	964	6	99.4
8 U Miami	1	0	100	8 UCLA	1935	882	24	98.8	8 U Cincinnati	1518	12	99.2
9 Stanford	129	2	98.4	9 U Miami	165	119	2	98.8	9 Stanford	4284	43	99
10 U Michigan	62	1	98.4	10 Columbia	4037	1544	77	98.1	10 U Michigan	1686	18	98.9
11 Emory	117	2	98.3	11 Vanderbilt	511	155	13	97.5	11 Case Western	1638	18	98.9
12 UCLA	40	1	97.5	12 U Iowa	470	309	12	97.5	12 U Iowa	93	1 9	98.9
13 Columbia	186	5	97.3	13 UCSF	1767	764	51	97.2	13 UCSD	791	13	98.4
14 Mass General	69	3	95.7	14 Mass General	4999	1865	148	97.1	14 UTHSC Houston	n 1317	24	98.2
15 U Washington	23	1	95.7	15 Northwestern	879	428	28	96.9	15 U Pitt	1356	26	98.1
16 U Minnesota	68	3	95.6	16 Ohio State	2951	1110	98	96.8	16 U Penn	3232	71	97.9
17 UCSF	41	2	95.1	17 U Wisconsin	537	223	18	96.8	17 Ohio State	2100	45	97.9
18 U Penn	116	6	94.8	18 Stanford	2686	1216	98	96.5	18 Columbia	5407	122	97.8
19 U Wisconsin	16	1	93.8	19 UCSD	918	349	49	94.9	19 Emory	3389	75	97.8
20 U Cincinnati	59	5	91.5	20 U Washington	529	325	29	94.8	20 Mass General	2084	49	97.7
21 U Pitt	48	5	89.6	21 Case Western	1508	694	89	94.4	21 U Washington	838	25	97.1
22 Northwestern	38	4	89.5	22 U Pitt	2281	1232	155	93.6	22 U Utah	301	10	96.8
23 U Utah	10	2	80	23 UTHSC Houston	1116	425	76	93.6	23 MUSC	1216	51	96
24 U Iowa	2	1	50	24 Mount Sinai	729	439	76	90.6	24 Vanderbilt	222	14	94.1

D. New Project Development Progress (Partial Test Data)											
			N	IINDS Grant Submission	Project Initiation						
Туре	Project	Concept Synopsis Approved by NINDS ESC	Feasibility Assessment	Grant Submit to NINDS		Scientific Peer Review	Awarded	Protocol Submit to CIRB	CIRB Approval	First Site Released	First Subject Enrolled
	Summary		Min=-6 Max=89 Med=22	Min=30 Max=106 Med=54	Min=92 Max=162 Med=147		Med=97	Med=1	Med=15		
Acute	DEFUSE 3	5/7/2014	-6 1/26/2015	31 58	162	11/10/2014 92	97	1	15 10/16/201	5	
Acute	ICTUS 3	6/4/2014	89	30	155	3/5/2015					
Acute	MOST	8/13/2014	-1	50 7/5/2015	155 131	3/5/2015 11/13/2015					
Acute	IMPACT	6/2/2015	20	106	147	3/1/2016					
Acute	PreLIMBS	7/23/2015	21	54	147	3/1/2016					
Prevention	PICASSO	10/16/2014	55	53	144	6/25/2015					
Prevention	ARCADIA	3/6/2015	21 1/27/2016	80	150	11/12/2015					
Prevention	ARREST	11/3/2015	22 11/25/2015								
Prevention	SleepSMART	11/3/2015	22 11/25/2015								
Prevention	SATURN	2/3/2016									
Recovery	RISiS	12/15/2015	45 1/29/2016								

CREST-2 and StrokeNet Site Enrollment

CREST-2 and StrokeNet Enrollment

- ► Total Enrollment = 181
- StrokeNet enrollment = 28

CREST-2 and StrokeNet Enrollment

• With 120 centers, CREST-2 needs to enroll only 6 patients per site per year to exceed target enrollment target.

• Current StrokeNet enrollment rate = 1.2

StrokeNet Enrollment

 35 CREST-2 StrokeNet Sites have been approved to move forward with IRB

• 25/35 have received green-light letters and are enrolling

• 16/25 have not enrolled a patient (the average number of months these sites have been enrolling = 4 months)

10 StrokeNet Sites have enrolled

Site	Principal Investigator	# of Patients Enrolled
UPMC Presbyterian, Pittsburgh, PA	Lawrence Wechsler, MD	7
Columbia University Medical Center, New York, NY	Randolph Marshall, MD	5
Massachusetts General Hospital, Boston, MA	Scott Silverman, MD	4
Emory University Hospital, Atlanta, GA	Ravi Veeraswamy, MD	3
Kaiser Permanente, San Diego, CA	Robert J. Hye, MD	2
University of Utah Hospitals & Clinics, Salt Lake City, UT	Jennifer Majersik, MD	2
Tulane University, New Orleans, LA	Albert Sam II, MD	2
University of California, Los Angeles, CA	Wesley S. Moore, MD	1
Keck Medical Center of the University of Southern California, Los Angeles, CA	Fred Weaver, MD	1
University Hospitals Case Western Medical Center, Cleveland, OH	Vikram Kashyap, MD.	1

Action Items from YOU

Selected Ideas

- 1. Find a method for your StrokeNet site to determine carotid volumes:
 - o patients with asymptomatic stenosis
 - treating MDs
 - referring MDs (e.g. Illuminate in place at Mayo)
- 2. C2 PI calls RCC PI monthly for 2 months, then quarterly.
- C2 Director for Recruitment calls the StrokeNet RCC operations lead monthly for 2 months and then quarterly.
- 3. C2 notifies StrokeNet RCC PI and RCC operations lead coordinator for every CREST-2 enrollment by site.
- 4. Provide RCCs an additional \$500 per CREST-2 patient enrolled for extra work involved.

CREST-2 Registry

- CMS reimburses and will go through 2022 at least
- Symptomatic patients
 - conventional risk and high risk
- Asymptomatic patients
 - Includes CREST-2 eligible ≤ 1:1
 per institution, not per interventionist
- 76 sites enrolling
- 75 interventionists approved, 65 pending
- 545 patients
 - 57% through Society of Vascular Surgery registry
 - 43% through American College of Cardiology registry

Lessons Learned

Donald Heck, MD CREST-2 Site PI Novant Health Winston-Salem, NC

"...CREST-2 is an easy trial for me to recommend to our patients. I emphasize the fact that there is no "placebo" arm of the trial. All patients in the trial receive state of the art medical care, and that is likely to make patients in the trial healthier than they might otherwise be."

Enrollment Tools in Progress

- Social Media
 - CREST-2 Website
 - Twitter Account
- Illuminate

ResearchMatch Volunteer Database

NCATS

Ideas to Enhance Enrollment



David C. Goff, Jr, MD, PhD
Dean and Professor

Colorado School of Public Health Aurora, Colorado

Cardiovascular Research Network Centers

Clinical Trial Recruitment

NCATS hubs are forming a national network to overcome barriers to participant recruitment for clinical trials.

Michael V. Homer, M.D., examines clinical trial participant

Steven C. Cramer, MD

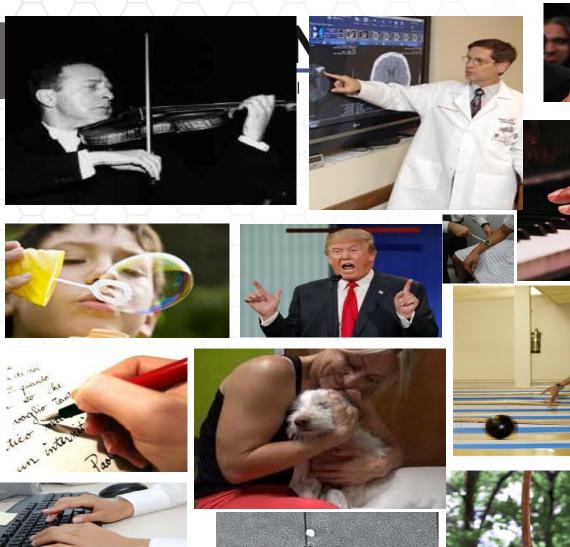
Professor, Depts. Neurology, Anatomy & Neurobiology, and PM&R Clinical Director, Sue & Bill Gross Stem Cell Research Center Associate Director, Institute for Clinical & Translational Science

University of California, Irvine

- Greater rehabilitation therapy = better outcomes
- Most patients do not receive higher doses, due to
 - Low compliance
 - Low access
 - High cost
- Advances in telemedicine suggest capacity to provide larger therapy doses, individualized, cost-efficient
- Telehealth is a tool that enables therapists, RNs, and MDs—does not replace them.

- 124 subjects with arm motor deficits 4-20 weeks after ischemic stroke, randomized to intensive arm motor therapy (a) traditional in-clinic vs.
 - (b) in-home telerehabilitation
- 36 sessions (18 supervised + 18 unsupervised), 80 min each, over 6 weeks; intensity, duration, and frequency matched across groups
- Assessor-blind, randomized, non-inferiority design

clinicaltrials.gov NCT02360488

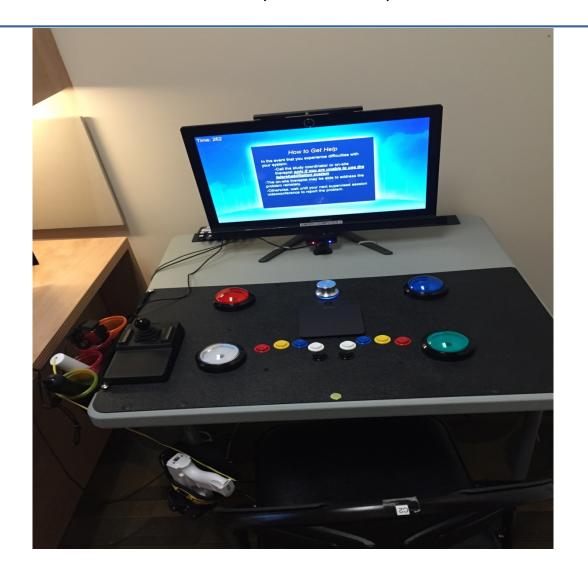


- Primary endpoint: change in arm motor status (Fugl-Meyer scale) to 30 days post-therapy
- Arm movement the focus here because it is
 - central to human function

clinicaltrials.gov NCT02360488

- Primary endpoint: change in arm motor status (Fugl-Meyer scale) to 30 days post-therapy
- Arm movement the focus here because it is
 - central to human function
 - commonly affected after stroke
 - strongly linked to disability level and to well-being after stroke

clinicaltrials.gov NCT02360488


Main Study Aims

- **Aim 1**. Subjects randomized to receive telerehabilitation will show arm motor gains that are not inferior to subjects treated in-clinic.
- Aim 2. Targeted education for 6 weeks will significantly increase patient knowledge related to stroke prevention and stroke risk factor control.
- Aim 3. Subjects in the telerehabilitation arm will show comparable or better
 - compliance with therapy and
 - activity-inherent motivation, which reflects how much a patient enjoys a therapy.

Telerehabilitation: assess, treat, monitor

Telerehabilitation in the Home Versus Therapy In-Clinic for Patients With Stroke

Parent RCC	Study Site
Los Angeles Southern California	University of California, Irvine
Northwest Stroke Trials Network	Harborview Medical Center
Chicago Stroke Trials Consortium	Rehabilitation Institute of Chicago
Cleveland Regional Coordinating Center	MetroHealth Rehabilitation Institute of Ohio
Georgia StrokeNet	Emory Rehabilitation Hospital
South Carolina Collaborative Alliance for Stroke Trials	MUSC Center for Rehabilitation Research in Neurological Conditions
Stroke Trials Network of Columbia and Cornell	Burke Rehabilitation Hospital
New England Regional Coordinating Center	Spaulding Rehabilitation Hospital

Telerehabilitation in the Home Versus Therapy In-Clinic for Patients With Stroke

- Start Date: Sept 2015
- Estimated Complete Date: April 2017
- # enrollment sites: 8
- # patients screened and rejected: 7
- # patients enrolled: 9 (across 6 of the sites)

Why the slow start to enrollment?

- Startup issues common with any new technology.
- December recruitment tough given demands protocol makes on enrollees: 4
 assessment + 18 supervised treatment sessions over 6 weeks.
- Variability in stroke research across cultures (acute vs. subacute vs. chronic)
- Variability in stroke research practice across sites

Telerehabilitation in the Home versus Therapy In-Clinic for Patients with Stroke:

An assessor-blind, randomized, non-inferiority trial

Survey to understand each site's recruitment practices

1) From where does your site identify potential enrollees?

	ER	ICU	Acute Stroke Unit	Acute Rehab Unit	Stroke Outpatient	Outpatient Rehab	Other Outpatient	Other
Burke				X	Х			
Emory				X	Х	Х		
Harborview	X	X	X	X	Х	X	X: OT	
Metrohealth ¹				X	Х			Х
MUSC ²		Х	Х	Х	Х			Х
RIC	Х	Х	Х	Х	Х	X		
Spaulding				X	Х	X		
UCI ³	X	X	×	X	X	×		

Telerehabilitation in the Home versus Therapy In-Clinic for Patients with Stroke:

An assessor-blind, randomized, non-inferiority trial

Survey to understand each site's recruitment practices

1) From where does your site identify potential enrollees?

	ER	ICU	Acute Stroke Unit	Acute Rehab Unit	Stroke Outpatient	Outpatient Rehab	Other Outpatient	Other
Burke				X	Х			
Emory				X	Х	X		
Harborview	X	X	X	X	Х	X	X: OT	
Metrohealth ¹				X	Х			Х
MUSC ²		Х	Х	Х	Х			Х
RIC	Х	Х	Х	Х	Х	X		
Spaulding				X	Х	X		
UCI ³	X	X	×	X	X	×		

Potential for consistent and in some cases increased RCC role for subject recruitment into the Telerehab trial

Telerehabilitation in the Home versus Therapy In-Clinic for Patients with Stroke:

An assessor-blind, randomized, non-inferiority trial

Survey to understand each site's recruitment practices

1) From where does your site identify potential enrollees?

	ER	ICU	Acute Stroke Unit	Acute Rehab Unit	Stroke Outpatient	Outpatient Rehab	Other Outpatient	Other
Burke				X	X			
Emory				X	Х	X		
Harborview	X	X	X	X	X	X	X: OT	
Metrohealth ¹				X	X			Х
MUSC ²		X	X	X	Х			Х
RIC	X	X	X	X	Х	X		
Spaulding				X	Х	X		
UCI ³	X	X	×	X	X	X		

Potential for consistent and in some cases increased RCC role for subject recruitment into the Telerehab trial and

into forthcoming StrokeNet Recovery & Rehabilitation trials

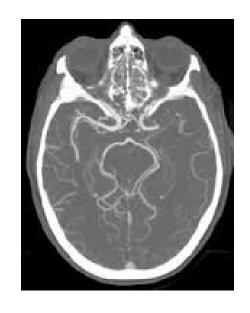
DEFUSE 3

DEFUSE 3: Hypothesis

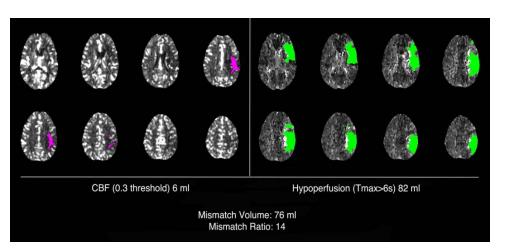
Stroke patients with MCA or ICA occlusion and *salvageable tissue* identified by CT/MR benefit from endovascular therapy in the 6-16 hour time-window

DEFUSE 3: Study Design

- Prospective, Randomized, Open-treatment, Blinded Endpoint, Adaptive trial
- Maximum sample 476 patients at 45 sites (Each site expected to enroll at least 10 patients)
- 1:1 randomization: endovascular vs. medical therapy


Clinical Inclusion Criteria

- Signs and symptoms consistent with an acute anterior circulation stroke
- Age 18-90 years
- Baseline NIHSSS ≥ 6 immediately prior to randomization
- Endovascular treatment (femoral puncture) between 6-16 hours of stroke onset (onset is defined as time last known well)
- Pre-stroke mRS score 0-2 (= functionally fully independent for all ADLs)
- Patient or Legally Authorized Representative has signed Informed Consent


Neuroimaging Inclusion Criteria

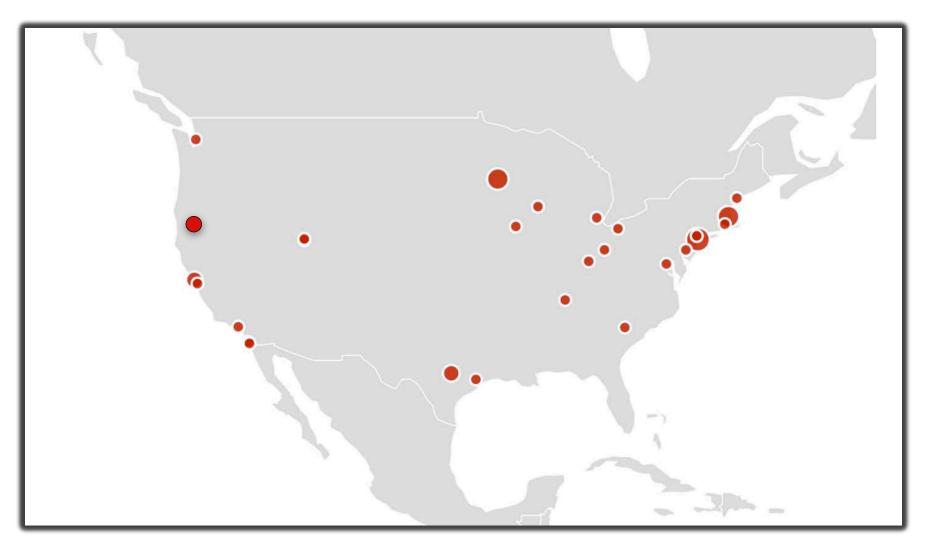
- 1) MRA / CTA demonstrates
 - M1 segment MCA occlusion, or
 - ICA occlusion (cervical or intracranial; with or without tandem MCA lesions)

AND

- 2) Target Mismatch Profile on CT perfusion or MRI (RAPID)
 - Ischemic core < 70 mL
 - Mismatch ratio ≥ 1.8
 - Mismatch ≥ 15 mL

DEFUSE 3 Roadmap

- StrokeNet feasibility and approvals
- FDA IDE approval (required for NIH submission)
- NIH submission / review / council / funding
- StrokeNet working groups provide final input on protocol
- DEFUSE 3 Exec Committee finalize protocol
- Final Protocol approved by FDA
- Central IRB approval
- CMS payment approval
- DSMB review and approval
- CRF development and approval
- Randomization algorithm validated
- WebDCU programed and tested
- Protocol Trial Agreements completed by NCC

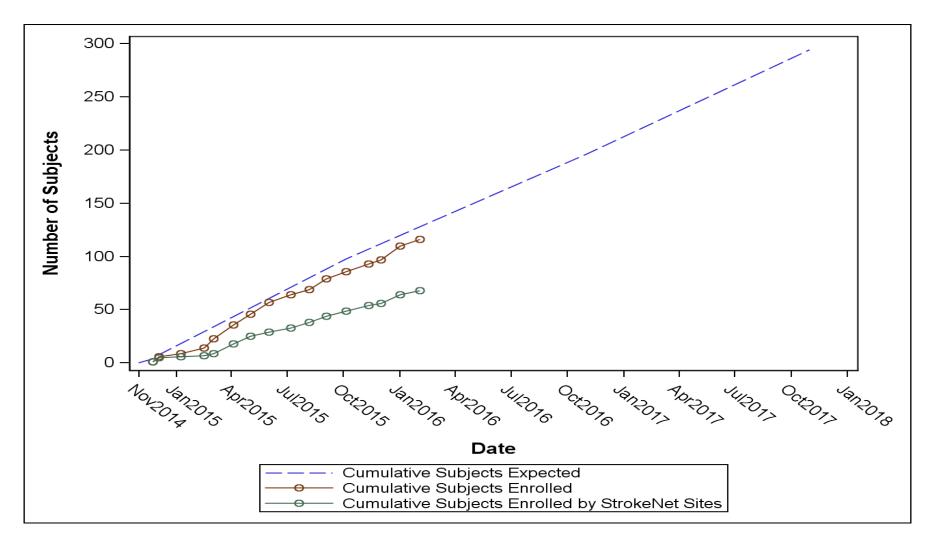


DEFUSE 3 Site Activation

- RAPID license agreement
- RAPID IT approval
- RAPID installation
- DEFUSE 3 CT&MRI protocols installed / test cases approved
- Endovascular credentialing
- Site training (protocol / endovascular / imaging / technologists)
- Site local IRB review/modify of consent form
- Site approval of Protocol Trial Agreement
- Regulatory approvals at site
- Randomize 1st patient!!!!!

DEFUSE 3 Sites

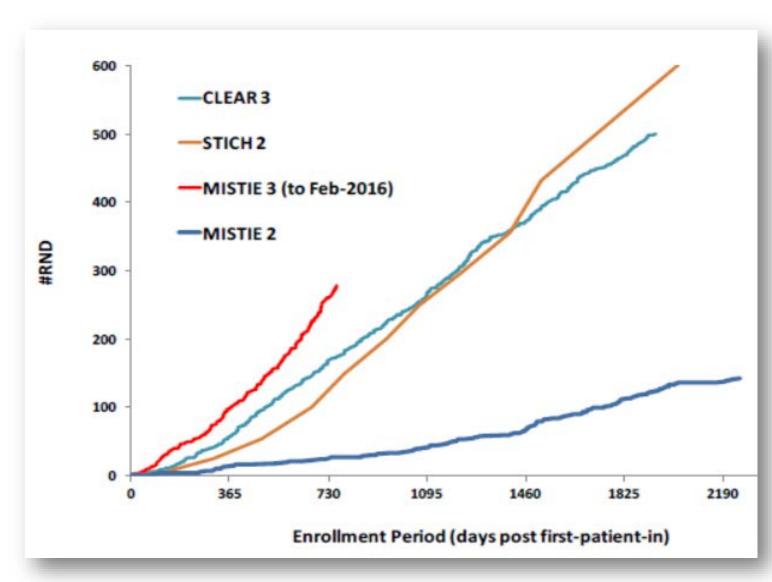
iDEF


Screening Summary

		Subjects Screened		ojects omized
	Date Site Released to Enroll	N	N	%
All as of 11FEB2016		3558	116	3.3%
StrokeNet Sites		1573	68	4.3%
Baptist Hosp of Miami	04NOV2015	13	1	7.7%
Beth Israel Deaconess Med Ctr	06OCT2014	107	2	1.9%
Harborview Med Ctr	17NOV2014	224	5	2.2%
Hosp of the Univ of Pennsylvania	18NOV2014	82	6	7.3%
Jackson Memorial Hosp	10NOV2015	12	0	0.0%
MUSC	08SEP2015	5	1	20.0%
Massachusetts General Hosp	15DEC2014	87	0	0.0%
Mount Sinai Med Ctr	09SEP2015	12	0	0.0%
NYP Columbia Univ Med Ctr	06APR2015	50	4	8.0%
NYU Langone Med Ctr	26AUG2015	21	0	0.0%
Ohio State Univ Wexner Med Ctr	04DEC2014	124	1	0.8%
Oregon Health & Science Univ Hosp	04NOV2014	70	21	30.0%
Rush Univ Med Ctr	14JUL2015	156	0	0.0%
San Francisco Gen Hosp	04NOV2014	68	14	20.6%
Stanford Univ Med Ctr	08NOV2014	100	4	4.0%
Tufts Med Ctr	08DEC2014	70	0	0.0%
UH Case Med Ctr	01JUN2015	52	2	3.8%
UMASS Memorial Med Ctr	03DEC2014	164	6	3.7%
Univ of Iowa	04DEC2014	156	1	0.6%

Enrollment Summary

MISTIE III



Recruitment

- 281 subjects enrolled
- Across 66 sites
 - 64 currently active
- In 9 countries:
 - US
 - Canada
 - Israel
 - UK
 - Germany
 - Hungary
 - Spain
 - Australia
 - China

Activated StrokeNet vs. All Non StrokeNet Sites

	Total Sites	% of Sites	% of Randomizations (n=281)
StrokeNet Hub	8	9%	12%
StrokeNet Spoke	20	22%	25%
Non StrokeNet	65	70%	63%
Total	93	100%	100%

Trial Overview

- Enrollment is ongoing
- Monthly educational webinars
- Quarterly Seminars
 - Surgical Center Report
 - Safety Forum
 - Training Refresher
- DSMB: March 2016
- DSMB: Futility Analysis (n=375) Spring 2017

StrokeNet Training Core Update

Dawn Kleindorfer, MD

NIH StrokeNet Training Core Members

Chair

Dawn Kleindorfer, MD University of Cincinnati

Faculty

Barbara Bregman, PT, PhD Georgetown University

Coordinator

Susan Love, MA University of Minnesota

Trainee 2015-2016 Trainee 2015-2016

Scott Mendelson, MD

Northwestern University

Mara Ayodele, MD University of Miami

Co-Chair

Randolph Marshall, MD Columbia University

Faculty

David Liebeskind, MD. University of California, Los Angeles

Coordinator

Heena Olalde, RN, MSN University of Iowa

Trainee 2014-2015

Cemal Sozener, MD University of Michigan

NINDS Project Scientist

Scott Janis, PhD **NINDS**

Faculty

David Tirschwell, MD University of Washington

Core Coordinator

Jeanne Sester University of Cincinnati

Trainee 2014-2015

Farhaan Vahidy, MD, PhD University of Texas, Houston

Current 2015-2016 Trainees

- 26 trainees, 42% female (last year 24%)
 - 1 trainee dropped out due to medical illness
- 12% under-represented minority (1 hispanic, 2 black) last year was 0%
- 4/25 are faculty members
- Degrees

•	MD	15
•	MD/PhD	3
•	DO	2
•	PhD	3
•	PharmD	1
•	MD, JD	1
•	DPT	1

Disciplines of Trainees

 Vascular Neurology 	13
 Vascular Intervention 	1
Rehabilitation/PM&R	2
PT/rehab	1
 Neuroradiology 	1
 Neurosurgery 	2
• NSICU	1
Neurology	2
 Emergency medicine 	0
Pharmacy	1
 Biomedical engineering 	1
Epidemiology	1

Activities of the Training Core

Didactic Webinars

- We have held 6 Stroke Net webinars so far this academic year
 - Always the 4th Thursday of the month at 4pm EST
 - Average attendance = **85 in 2015-16**! 82 in 2014-15, 75 in 2013-14
- 94% average of attendees felt the webinar to be useful to their academic practice
 - All webinars are archived on the StrokeNet website
 - All previous SPOTRIAS webinars are also online
 - Broader audience and inclusion of career development compared to SPOTRIAS

2015-16 Didactic Webinars

Date	Topic	Speaker	Institution	Moderator
July 30	Ethics in Acute Research and Emergency Medicine	Michelle Biros	UMinn	Liebeskind
Aug 27	BP and Cognition - Impact of Blood Pressure and Hypertension on Cognitive Function	Clinton Wright	Miami	Marshall
Sept 24	Consent in Clinical Trials	Jennifer Majersik	Utah	Liebeskind
	Remote Enrollment by Telemedicine	Teddy Wu	Texas	
Oct 29	Treatment of Carotid Stenosis	Seemant Chaturvedi	Miami	Marshall
Nov 19	Rehab in Acute Stroke/Neuroplasticity	Lorie Richards	Utah	Marshall
Jan 28	Imaging Selection Approaches in Endovascular Trials	David Liebeskind	UCLA	Tirschwell
Feb 25	Brain Computer Interface for Rehab	Elliott Roth	Northwestern	Liebeskind
Mar 24	Gloves Off for Acute Stroke Management; Fellow Case	Jay P Mohr	Columbia	Kleindorfer
	Presentations to two Stroke Experts	TBD		
April 28	Neuroprotection – STAIR Criteria and the Future	Louise McCullough	Texas	Marshall
May 26	ICH Secondary Prevention	Magdy Selim	Beth Israel	Tirschwell

Professional Development Webinars

 Process: Topics and speakers suggested by members of the education core and end-of-the-year trainee survey

Variable times and dates (by request of some RCCs)

Topics and speakers voted upon during Training Core call

Professional Development Webinars 2015-16

Date	Topic	Speaker	Time	Institution	Moderator
July 27 Monday	Writing your CV & Biosketch (updated with new format)	Dawn Kleindorfer	4:00	Cincinnati	
Aug 20 Thursday	Approval Process for Medical Devices in Stroke	Wade Smith	2:00	UCSF	Tirschwell
Sept 30 Wednesday	How to Present your Data	Enrique Leira	3:00	Iowa	Kleindorfer
Oct 20 Tuesday	Creating a Study Budget	Joe Broderick Judy Spilker	1:30	Cincinnati	Kleindorfer
Nov 12 Thursday	Grant Writing	Steve Greenberg	1:00	MGH	Marshall
Jan 21 Thursday	Training Grants and Tips for Success from NINDS	Steven Korn	1:00	NINDS	Kleindorfer

Trainee Research Presentations

- 21 RCC Trainees submitted summary of their research (only 12 last yr)
 - Assigned 2+ faculty mentors to review their work for feedback
 - Training core members reviewed the applications and scored them
- 3 will present at ISC StrokeNet General Meeting
- 6 presented at a session prior to the StrokeNet meeting, with designated mentors present
 - Very engaged group, lots of great discussions
- 12 will present webinars monthly over the remainder of the year.
- List of trainee research presented at 2016 ISC at registration and via email
 - Includes this year and last year's trainees

Date	Title	Trainee	Time	Univer- sity	Moder- ator
Jan 20 Wednesda y	A Retrospective Cohort Study of the Relation of Primary Language to Thrombolytic Therapy in Patients with Acute Ischemic Stroke	Natalie Cheng	4:00	UCSF	Tirschwell
	Modulating the Brain with Bihemispheric Transcranial Direct Current Stimulation and Constraint-Induced Movement Therapy to Enhance Stroke Motor Recovery	Pratik Chhatbar		MUSC	
Feb 29 Monday	Frequency of Microembolic Signals in Symptomatic Carotid Occlusion Compared to Carotid Stenosis	Ava Liberman	2:00	UPENN	Tirschwell
	Relationship Between Perfusion Imaging-Based Reperfusion and Clinical Variables in Acute Ischemic Stroke Patients Treated with Intraarterial Therapy	Sun Kim		Stanford	
Tuesday	Modulating Cortical Excitability with Direct Electrical Stimulation	Jared Olson	2:00	Washington	Marshall
	Outcome Comparisons in Severe Cerebral Vasospasm in Aneurysmal Subarachnoid Hemorrhage Patients with Incomplete Neurological Exam	Joshua Lim		Minnesota	
· .	Race-Ethnic Disparities Among Intracerebral Hemorrhage (ICH) Patients in the Florida-Puerto Rico Collaboration to Reduce Stroke Disparities (FL-PR CReSD)	Maranatha Ayodele	1:00	Miami	Vahidy
	Wallerian Degeneration in Ischemic Versus Hemorrhagic Stroke: A Neuroimaging Study TBA – Trainee Presentations	Muhammad Haque		Texas	
May 18 Wednesda	Noninvasive Brain Stimulation to Evaluate Neural Plasticity After Stroke	Whitney Gray	2:00	Emory	
	Using Fresh Frozen Plasma, Vitamin K, and Platelets to Stop Intracranial Bleeding in Patients Presenting with Spontaneous & Traumatic Intracerebral Hemorrhage	Peter Morone		Vanderbilt	
May 23	Characterization of Mitochondrial Function in Peripheral Blood of Patients with Slow and Rapid Progression of Anterior Circulation Ischemic Strokes	Marcelo Rocha	2:00	Pittsburgh	Liebeskind
	Shoulder-Hand Muscle Interactions Post Stroke	Shashwati Geed		MedStar	

Activities of the Training Core

- Supervision of the RCC Training Programs
 - Ensure that adequate focus on stroke research
 - Education plans with milestones for progress due prior to trainee arrival
 - All approved last year, with two requiring more information for the core's review
 - Mid-year progress reports- not doing this year!
 - Final Progress Report
 - Including information about their next position and success in research so far, contact information
 - Trainee survey regarding their experiences in the program

Activities of the Training Core

- Serve as a resource for trainees and mentors
 - Maintain contact info for current and past trainees- online
 - Post training opportunities, such as NINDS Clinical Trials Workshop
 - Job postings
 - Assist with finding mentors for trainees off-site
 - 3 requests this year: Shyam Prabhakaran and Susan Fagan, 1 request postponed d/t illness
 - Away rotations?

Last Year's Survey: Suggestions for Improvement-Themes

- More ways for networking amongst trainees
 - Last night: an informal meeting of only trainees at a local hotel bar. XX were able to attend, many were not due to flight times.
 - Why not today? Rooms are tight and expensive, training core does not have a budget
 - (insert picture here)

New program for networking: "Slack", led by Cemal Sozener.

StrokeNet Trainee Networking Platform

Cemal Sozener, MD

Education Core Committee Member

StrokeNet Trainee 2014-15

Goals

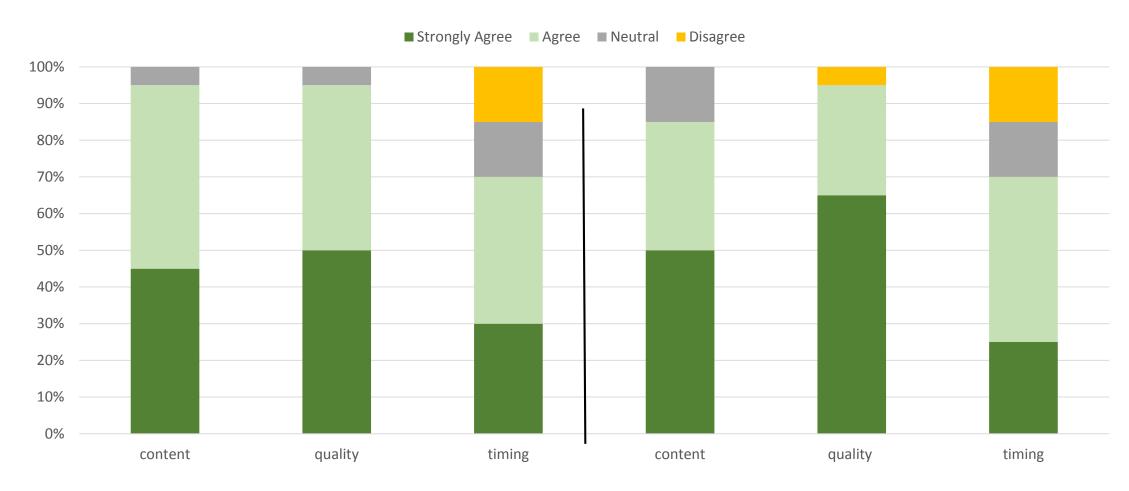
- Allow trainees to easily communicate and network with one another
- Be able to send messages to one trainee, all trainees or groups of trainees
- Get away from overused platforms such as email, listservs

- Free team communication platform
- Seamless between laptop, desktop, tablet and smartphone
- Can organize public or private channels or direct message other members
- Drag and drop files for sharing
 - Even from cloud drives (Dropbox, Google Drive or Box)
- All messages and documents are archived and searchable

- Invitations coming out soon
- Fellows can easily network with other trainees from across the country
- Goal to build collaborations and encourage communication

Suggestions for Improvement-cont.

- Requests for more information earlier from the Training Core, more interaction with our members
 - ACTION PLAN: most of the trainees have had a brief time on Training Core calls to introduce themselves, meet the core, and describe their program and research interests
 - Positive feedback from trainees so far, feels more connected with the core, a chance to ask questions


Evaluation of The Program

• End of the year survey for 2014-15 Trainees

How satisfied are you?	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
My overall experience was good, and I believe it enhanced my stroke research career.	70%	30%			

Webinar Evaluations

Didactic Professional

Evaluation of Communication and Website

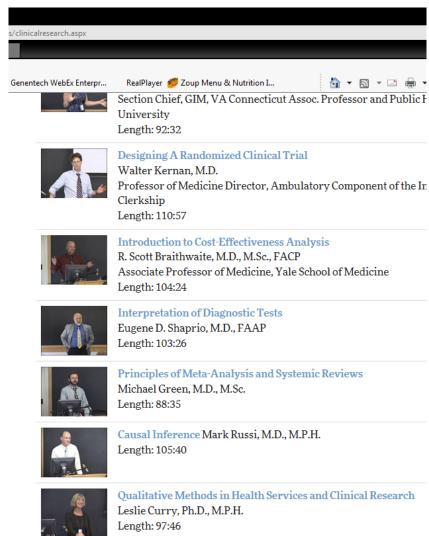
How satisfied are you?	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
Communication					
The time to network and share ideas with peers was adequate.	30%	40%	20%	10%	
The communication you received from the training core was adequate.	50%	30%	20%		
Website					
Viewing webinars after the fact was easy.	50%	45%	5%		
The information provided online is sufficient.	55%	35%	10%		

Evaluation of Local RCC Mentorship

How satisfied are you?	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
Mentorship					
The time you were able to spend with your mentor met your needs.	70%	30%			
The feedback you received from your mentor was adequate & helpful.	70%	25%	5%		
Did the mentor assigned develop into a relationship	80%	15%	5%		

Open-ended comments from trainees

- "This program was outstanding and instrumental in setting up my research career. Without this opportunity, I would never have been able to achieve the progress I made over the last year and would have had marked difficulty guiding my career into one with a heavy emphasis on clinical trial design and execution like I wanted."
- "Highly qualified and renowned professionals from the highest accredited centers in the U.S. are available to fellows, either in the form of formal mentors or just providing input on your work in the different meetings throughout the year.
 Wide variety of topics in the webinars. Fellows and mentors with varied backgrounds. Room for research in many different aspects of stroke."
- "This was an outstanding experience. My sincere thanks to StrokeNet for allowing me to gain content expertise in stroke at the same time as being able to mold my research career in a protected environment."



Other Future Projects

Stroke Research Core Curriculum-First approach: online biostatistical

core curriculum for stroke researchers

Other Future Projects

Further encourage cross-center mentorship and interaction

- Improve Trainee Webinar Presentation Interactions
 - Dead silence after the trainee finishes....moderator usually is the only one asking questions

Future of Training Core

Need volunteers for new Training Core membership

- Under-represented minority trainees: opportunity for an extra year of training at your institution (via UC's T32 program)
 - If interested talk to me offline

Metrics for Measuring Success of Training Core

- Webinar Attendance and Attendee Surveys
- Research Presentations by Trainees
- Final Trainee Survey
- Trainees themselves!
 - Publications (working on this, huge task...)
 - Future participation in research
 - Academic institutions
 - Participation in clinical trials/clinical research
 - 24/25 of 2014-15 trainees reported their next position was in academia and will be "significantly involved" in research
 - Writing/receiving grants

Training Plan for 2016-17: DUE May 2nd!

- Name of the trainee, discipline, and CV. Contact info, if you haven't submitted this already.
- Rotation schedule
 - strongly suggest that the year be 50% dedicated to research or more.
 - Please list in a way that we can understand how much time is protected
- Planned didactic coursework and other research training
- Research interests and mentor, if known.
- Any requests for off-site mentors and/or rotations.
- Email to Jeanne Sester

Fellow Presentations

Evaluation of capillary transit time distribution as a biomarker for endothelial dysfunction in acute ischemic stroke

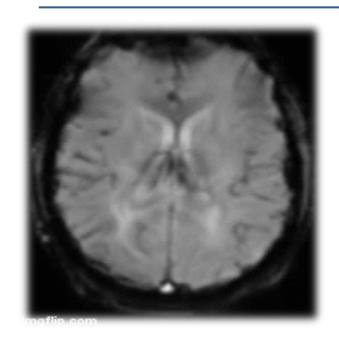
NIH StrokeNet Meeting

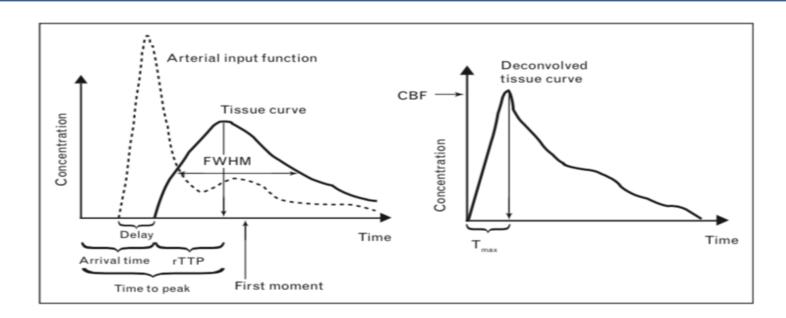
February 15th 2016

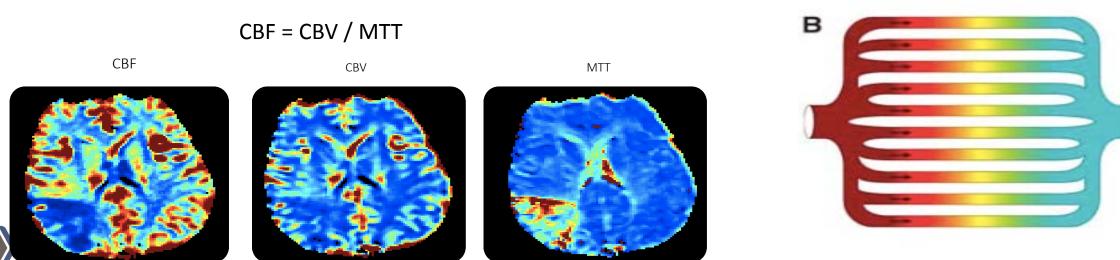
Arne Lauer, MD

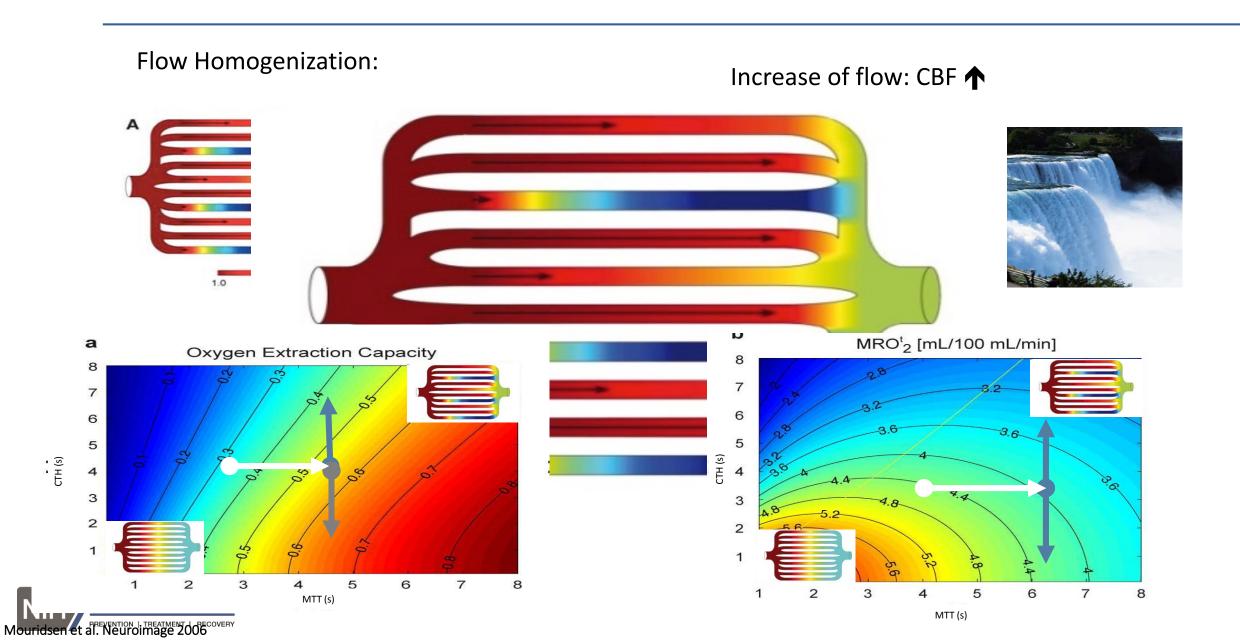
NIH StrokeNet Trainee

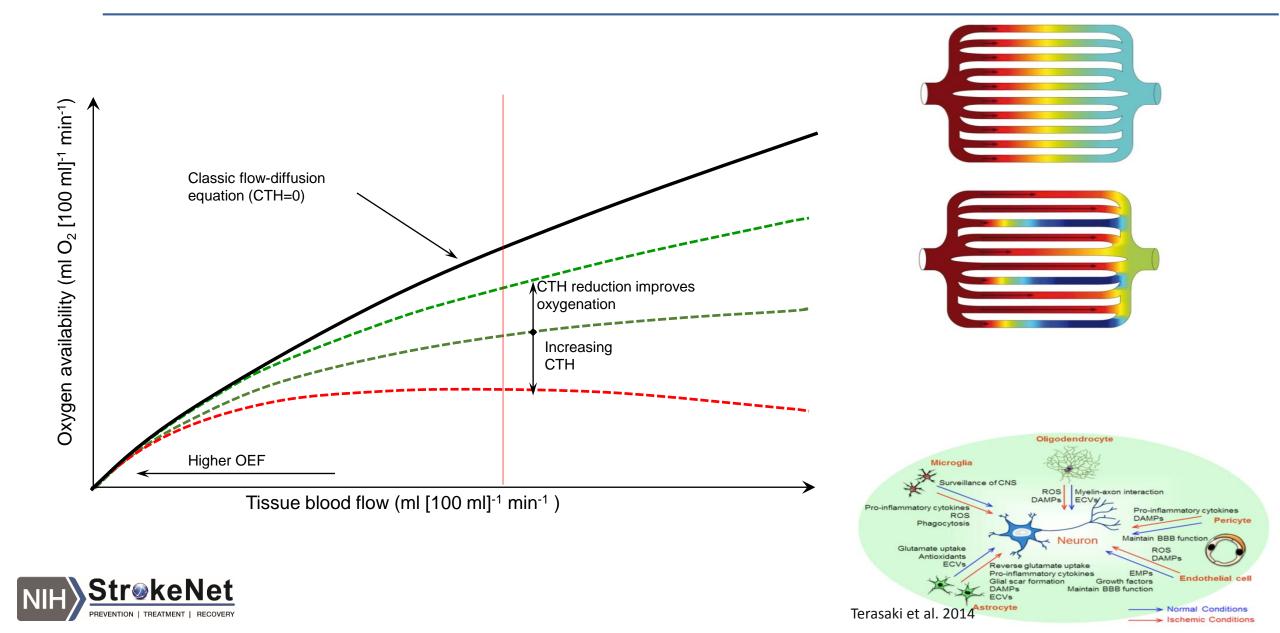
Massachusetts General Hospital

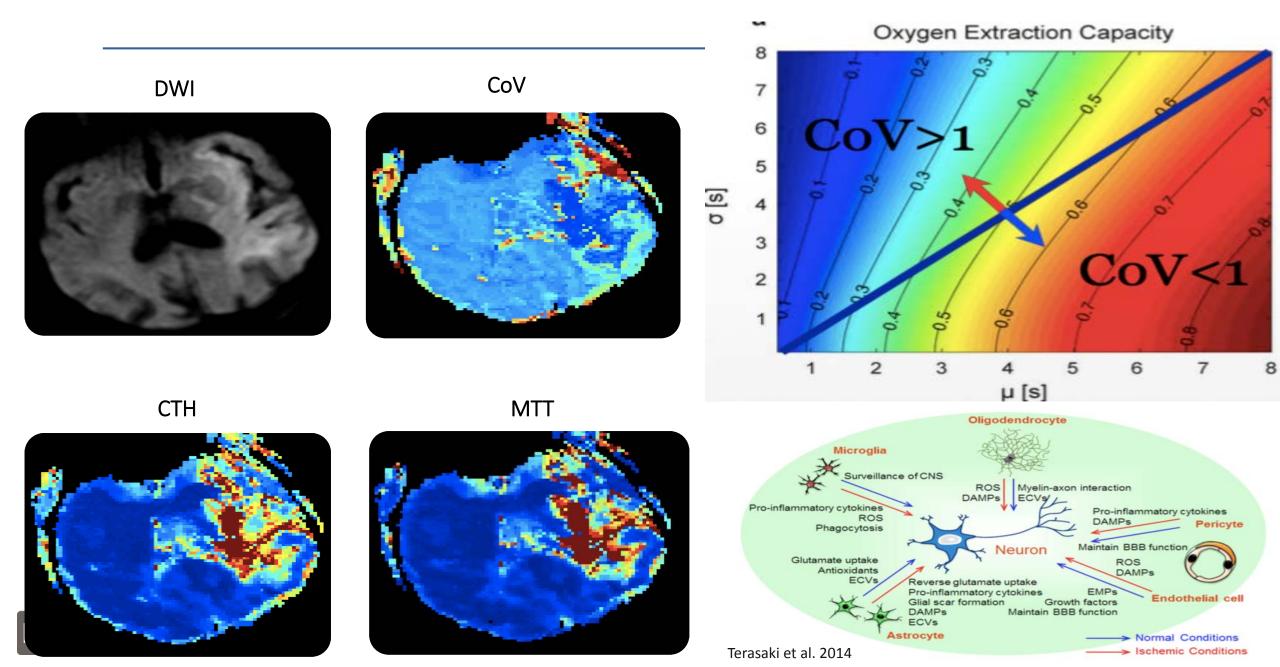

New England Regional Coordinating Center (NERCC)


Outline


- Capillary Transit Time Distribution
- Methods
- Imaging cohort
- Preliminary results
- Project aims
- Future directions

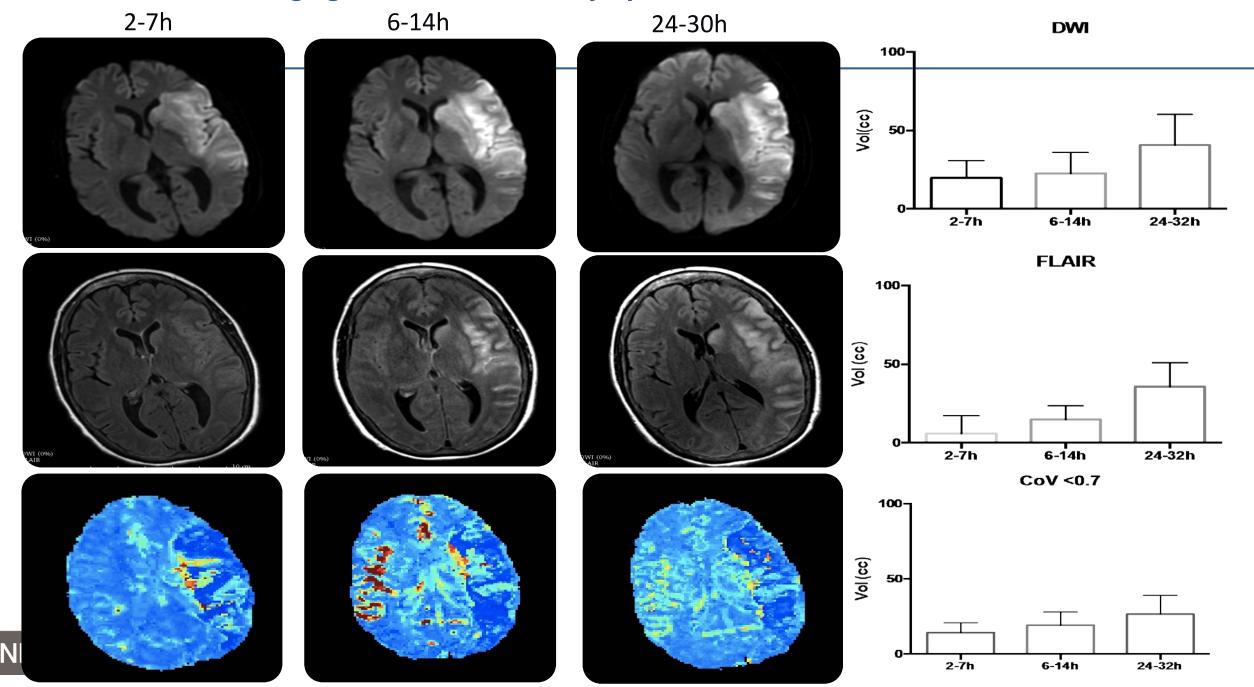

Estimation of Cerebral Perfusion and Perfusion Imaging


Capillary Flow Pattern determine Oxygen Extraction Capacity

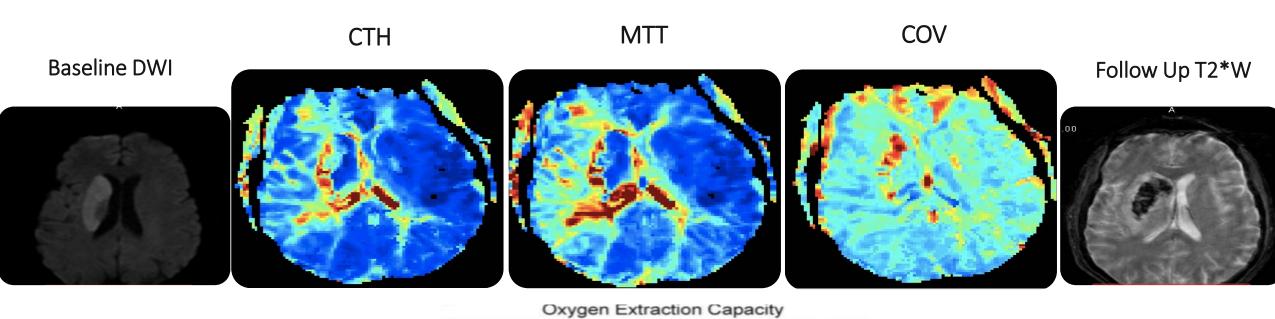

Estimation of Capillary flow pattern: Capillary Transit Time Heterogeneity

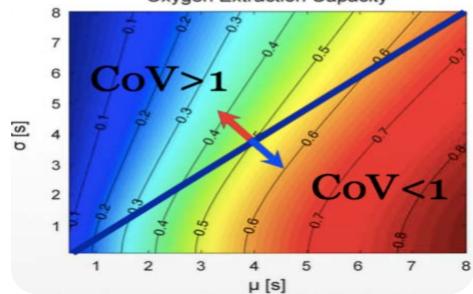
Maximum Supportable Metabolic Rate Depends on CTH

Variation for the Transit Time Distribution (CoV)

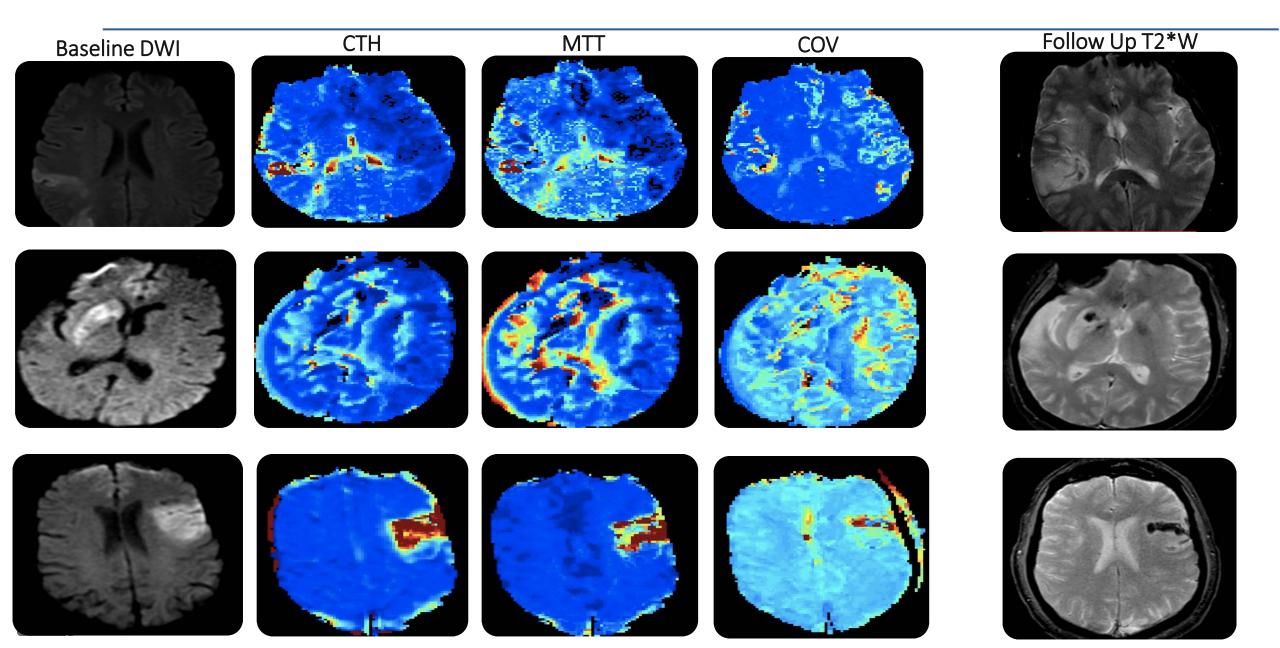

Acute Ischemic Stroke Imaging Cohort

- NIH-NINDS SPOTRIAS project (P50-NS051343, Furie PI)
- 279 AIS patients with baseline MRI (LSW <9h)
- Available baseline perfusion imaging:
 - MRP: n=217
 - CTP: n=98
 - MRP+CTP: n=60 at admission
- 74 subjects with repeated MRP (BL, +6h, +24h) (Singhal PI)
- Admission blood samples
- 29 HT on follow up (17 PT, 12PH)





Low CoV as Imaging Marker for Tissue Injury?


Regions with high CoV correspond to Hemorrhagic Transformation?

Regions with high CoV correspond to Hemorrhagic Transformation?

Project Aims:

- 1. Explore predictive value of CoV for hemorrhagic transformation
- 2. Screen plasma samples for corresponding endothelial markers
- 3. Assess correlations with perfusion based imaging marker
- 4. Evaluate performance of the perfusion algorithm comparing MRP/CTP

Future Directions:

- 1. Predicting stroke outcome by advanced multimodal modeling
- 2. Identify novel targets for intervention in acute ischemic stroke

Acknowledgements

JPK Stroke Research Center:

Natalia Rost

Ona Wu

Aneesh Singhal

Michael Lev

Kristin Schwab

Lee Schwamm

Steven Greenberg

Eichler Lab:

Patricia Musolino

Mathias Vissers

Nikhil Sasidharan

Florian S. Eichler

Aarhus University:

Kim Mouridsen

Mikkel Bo Hansen

Leif Ostergaard

Martinos Center:

Xiao Da

Yangming Ou

Jayashree Kalpathy-Cramer

Bruce Rosen

Brown University:

Karen Furie

Charité:

Michelle Livne

MGH Neuroprotection Research Lab:

Josephine Lok

Klaus van Leyen

Xioaying Wang

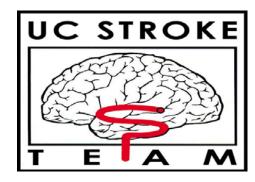
Ken Arai

Changhong Xing

Kazuhide Hayakawa

Eng H. Lo

Supported by:


- -NIH/NINDS SPOTRIAS P50-NS051343
- -R01 NS082285
- -R01 NS086905
- -R01 NS059775
- -K08 NS0968301

Association of Ischemic Stroke Location and Demographic Variables with Percutaneous Endoscopic Gastrostomy Placement

Michael Star¹, Heidi Sucharew², Sean Ruland³, Kathy Alwell¹, Charlie Moomaw¹, Brett Kissela¹, Matthew Flaherty¹, Daniel Woo¹, Jason Mackey⁴, Sheryl Martini⁵, Opeolu Adeoye⁶, Simona Ferioli¹, Felipe De Los Rios La Rosa¹, Dawn Kleindorfer¹

- 1. Dept of Neurology and Rhabilitation Medicine, University of Cincinnati
 - 2. Cincinnati Children's Hospital
 - 3. Dept of Neurology, Loyola University Stritch School of Medicine
 - 4. Dept of Neurology, Indiana University School of Medicine
 - 5. Michael E. DeBakey VA Medical Center

National Institutes of Health

. Dept of Emergency Medicine, University of Cincinnati

Disclosures

• University of Cincinnati StrokeNET Fellow

Acknowledgements

• Greater Cincinnati / Northern Kentucky Stroke Study was funded by NINDS (Grant: R01 NS 30678)

Background

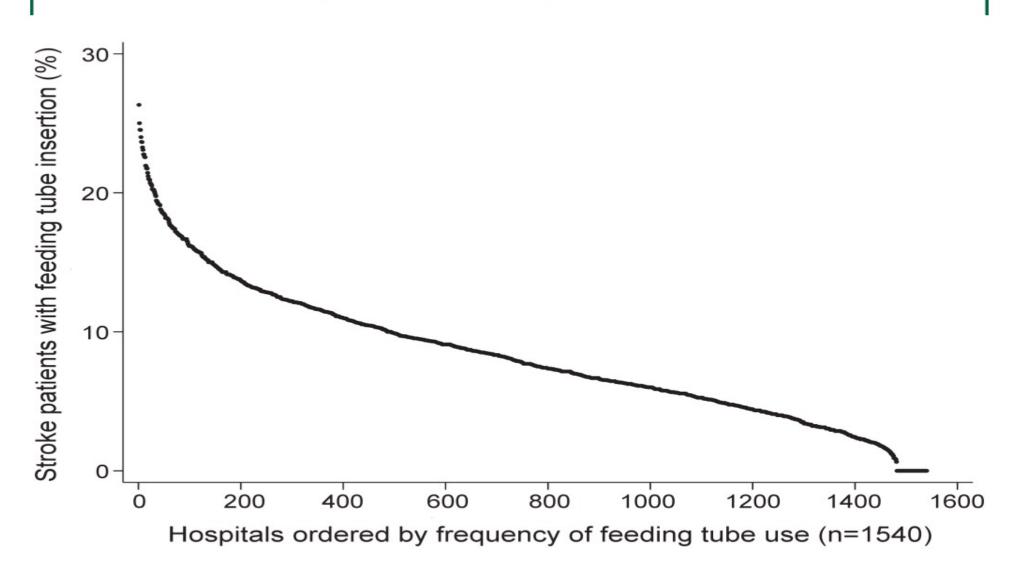
- Brainstem strokes have significantly higher rates of dysphagia and aspiration¹
- PEG used in patients with unmanageable dysphagia and severely debilitating, but survivable strokes

Background (2)

- PEG is Controversial!
 - Life-sustaining/prolonging medical intervention
 - Basic humane care
 - Disability accommodation¹
- PEG is Expensive!
 - Estimated to cost \$31,832/year²

Background (3)

- FOOD Study:
 - Largest randomized, control trial to study nutrition after stroke
 - Studied:
 - Malnutrition in all stroke patients
 - Early enteral nutrition vs. "avoid tube"
 - NGT vs. PEG
 - Findings:
 - None significant



Background (4)

• Not only is there no evidence of how to practice, but there is evidence that practice varies widely and wildly

Figure 1 Rank order of frequency of feeding tube placement in acute ischemic stroke hospitalizations, 2008-2011

Aim 1

- Determine if posterior circulation strokes were more likely to undergo PEG than anterior circulation strokes
 - Hypothesize that posterior circulation strokes would lead to more PEGs

Aim 2

- Determine clinical and demographic variables that are associated with PEG in stroke patients
 - To better understand who is undergoing PEG

Aim 3

- Develop "PEG Score" based on findings to determine likelihood of PEG in current practice based on demographic and clinical characteristics
 - For future research applications, not clinical use

Greater Cincinnati/Northern Kentucky Stroke Study Laboratory

- 5-county region, biracial population of 1.3 million
- Designed to study racial differences in stroke
- 1988-89, 93-94, 99, 2005, 2010¹⁻³
- All local hospitals, clinics, coroners offices, sampling of nursing homes and physician offices
- TIA/IS/ICH/SAH
- ~4,000 events/year

- 1. Broderick, et al, Stroke 1998
- 2. Kissela, et al, Stroke 2004,
- 3. Kleindorfer, et al, Stroke 2006

Methods

- All AIS patients >18 years presenting to emergency department or inhospital in 2010
- GCNKSS screen hospital discharges using ICD-9 discharge codes 430-436
- Cases physician confirmed
- Stroke location by brain imaging or physician impression

Statistics

- Outcome: PEG tube placement
- Multivariable logistic regression used to evaluate associations between PEG and clinical/demographic characteristics
- Score: Points assigned to variables using beta coefficients from final multivariable logistic model

Demographic and clinical variables considered:

- Age
- Race
- Sex
- Insurance status
- rNIHSS
- Atrial fibrillation
- Dysphagia
- tPA
- Bi-hemispheric stroke
- Hospital-type
- Stroke location

Results

- 2168 ischemic strokes
 - Median age 71
 - 55% women
 - 22% black race
- 118 (5%) underwent PEG
 - Largest stroke population studied for PEG use

PEG and Stroke Location

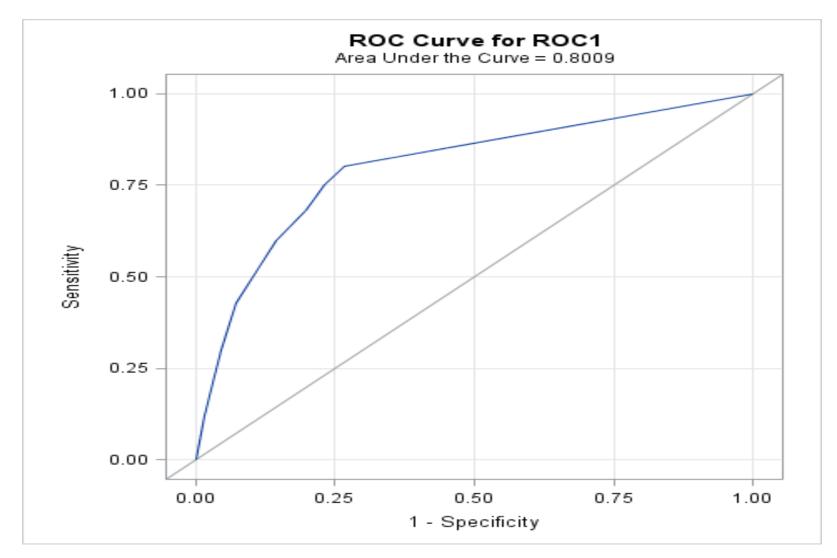
Location	N	PEG, n (%)
Anterior only	1365	83 (6.1%)
Posterior only	457	16 (3.6%)
Posterior and Anterior	346	19 (5.5%)
Posterior		
Brainstem	173	15 (8.7%)

PEG and Demographic/Clinical Variables

Variable	PEG	No PEG	P-value
Age (median)	74	71	0.01
Black race	32%	21%	< 0.01
rNIHSS (median)	14	3	<0.01
Atrial fibrillation	42%	21%	< 0.01
Bi-hemispheric stroke	25%	14%	<0.01
Dysphagia	49%	15%	<0.01

Multivariable Analysis: Factors Predicting PEG Use, p < 0.01

Variable	Odds Ratio	95% CI
Black Race	2.34	1.45 - 3.76
NIHSS	1.09	1.06 – 1.11
Atrial Fibrillation	2.42	1.51 - 3.88
Dysphagia	3.68	2.41 - 5.62
Hospice/Died	0.29	0.15 - 0.56



PEG Score

Item	Value	Points
History of Afib	Yes	2
	No	0
Dysphagia	Yes	3
	No	0
NIHSS Dysarthria	0 normal	0
	1 mild-moderate	2
	2 severe	7

• Score \geq 3: Sensitivity = 80%, Specificity = 73%

- AUC = 0.80
 - Performs well with cross validation (0.75 AUC)

Discussion

- Posterior circulation strokes were not more likely than anterior circulation strokes to undergo PEG
 - Likely due to PEG being just as much about massive strokes as it is about dysphagia
- One possible explanation for significantly higher rate of PEG among black patient is cultural attitudes to end-of-life care

Discussion (2)

- 2 other PEG analyses with black race as independent factors^{1,2}
- NY SPARCS data demonstrated lower short-term black stroke patient mortality, with associated lower use of hospice and increase in life-sustaining interventions³
 - 1. Dubin, Stroke, 2013
 - 2. Faigle, Stroke, 2015
 - 3. Xian, Ann of Int Medicine, 2011

Limitations

- BIG caveat this is not about who *should* get PEG, but who *does* get PEG
 - NOT to be used clinically, but instead for research
- PEG Score needs to be externally validated
- Retrospective chart review
- Stroke location based on clinical radiology reports

Future Directions

- Use PEG Score for inclusion criteria in future outcomes studies
- Separate research of enteral feeding in mild strokes with dysphagia and massive strokes
- Connection between racial disparities in end-of-life care and PEG placement

Thank you!

Questions?

Memantine for Enhancement of Stroke Motor Recovery

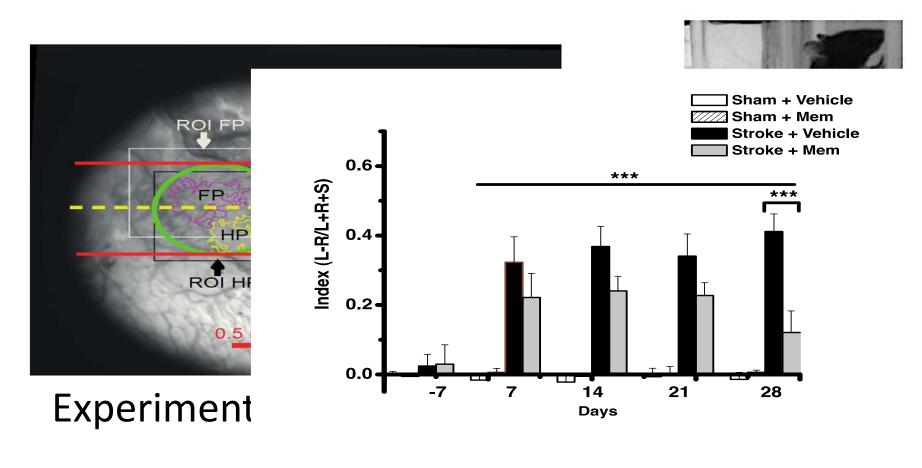
Alicia Bennett, DO, StrokeNet Fellow Lorie Richards, PhD, Occupational Therapy K.C. Brennan, MD, Headache Neurologist Edward DiBella PhD, Department of Radiology Jennifer J. Majersik, MS, MD; Stroke Neurologist

Disclosures

StrokeNet NIH Funding (Grant 5U10NS086606-03)

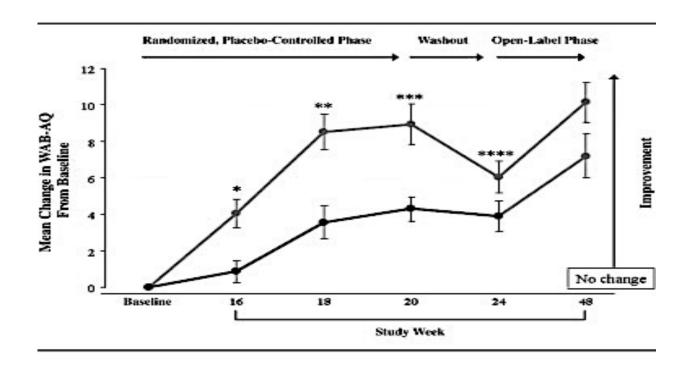
Support by the University of Utah Study CTSA (Grant 5UL1TR001067-02)

Background


 Motor impairment is one of the leading causes of long-term disability following stroke.

 Increasing evidence that plasticity is retained after stroke.

Memantine in Animals


est

Memantine in Humans

- 2009 Berthier et. al. studied chronic post-stroke aphasia patients
 - Placebo controlled trial
 - significant improvement in aphasia
 - No adverse effects

Hypothesis

Treatment with memantine XR for 12 weeks following an acute stroke will be feasible and associated with improvement in motor control (Fugl-Meyer Score) with no greater adverse events.

Design

 Randomized double blind placebo-controlled pilot study in which participants with acute stroke and upper extremity weakness are randomized to either drug or placebo

Target enrollment of 10 patients per group

Str keNet

Aims

- Primary Aims
 - Aim 1: Measure change in Fugl-Meyer Score
 - Aim 2: Comparable adverse events
- Secondary Aims
 - Aim 3: Measure change in grip strength test and ten meter walk
 - Aim 4: Differences between groups in stroke impact scale, motor activity log

Fugl-Meyer Scale

A. Wrist control

B. Hook grasp

- Upper and lower extremity portion
- 50-item motor scale
- Scores range from 0-100

Inclusion Criteria

- 1. Age 18 and older
- 2. Acute or hemorrhagic stroke
- 3. Randomization between 3 days and 8 weeks of stroke symptom onset
- 4. Arm weakness severe enough to warrant inpatient or outpatient OT
- 5. Able to voluntarily move affected UE

Exclusion Criteria

- 1. Subarachnoid or subdural hemorrhage
- 2. NIH Stroke Scale ≥20
- 3. History of prior clinical stroke with residual symptoms on the same side as the current symptoms that would interfere with outcomes of this study

Methods

- Baseline testing for eligibility
- Randomized
- Participants continue memantine XR or placebo for 12 weeks
- Follow-up testing at weeks 4 and 12
- Follow-up phone calls at weeks 1, 2, 3, and 8
- Optional MRI substudy at same time intervals

Results

- 4 subjects to date
- No difficulty with testing
- All participants have returned for testing
- No serious adverse events
- Medication adherence has been 100%

Future Direction

- Minority recruitment
- Further expansion of recruitment sites
- Feasibility assessment

National and Regional Coordinating Centers

Thank You

Overview of Trial Proposals

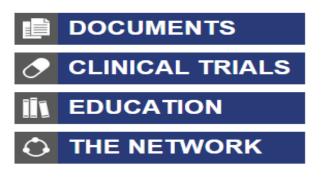
Project Name	Protocol PI	Category	Status Update	
IMPACT	Andrew Naidech	Acute	March 4-5, 2016 Study Section	
PreLIMBS	Sebastian Koch	Acute	March 4-5, 2016 Study Section	
CREST H	Randy Marshall, MD	Prevention	March 4-5, 2016 Study Section	
Sleep SMART	Devin Brown Prevention		February 2016 grant submission.	
(C-PAP)				
ARREST	Robert Brown, James Torner, David Hasan	Prevention	February 2016 grant submission.	
MOST	Opeolu Adeoye/ Andrew Barretto	Acute	Did not pass through Council. Will submit as an A01 in June, 2016. Endovascular issues addressed with data.	
PICASSO	Marc Chimowitz	Prevention	March 2016 grant re-submission	
ARCADIA	Hooman Kamel/ David Tirschwell/ Mitch Elkind	Prevention	March 2016 grant re-submission with increase in sample size. Working out budget with increased cost of the study drug due to sample size and increased drug costs.	
RISiS	Julius Fridrikkson, Ron Lazar, Ed Jauch, Jordan Elm, Leonardo Bonilha	Recovery	June 2016 grant submission	

Project Name	Protocol PI	Category	Status Update
SATURN	Magdy Selim	Prevention	June 2016 grant submission
ICTUS 3	Pat Lyden	Acute	June 2016 grant re-submission (possible)
LAMITNECC	Loo Schwamm	Acute	Pending CSP approval,
I-WITNESS	Lee Schwamm		June 2016 grant submission
DOCED	Alau Duana ariah	Recovery	Pending CSP approval
DOSER	Alex Dromerick		June 2016 grant submission
	Nerses Sanossian Administrative PI,	Acute	Pending CSP approval,
Tempo-EMS	Bill Barsan, Jeff Saver, David Hess,		June 2016 grant submission
	Ed Jauch, Rob Silbergleit		
ALISAH 2	Jose Suarez	Acute	Pending CSP approval,
ALISAN Z	Jose Suarez		June 2016 grant submission
Dose			
Response		Recovery	Pending CSP approval,
Aerobic	Sandra A Billinger, PT, PhD		June 2016 grant submission
Exercise in	Janara A Dillinger, 1 1, 1 11D		
Subacute			
Stroke			
SOPRANO	Karl Meisel, Wade Smith	Prevention	Under Discussion with NINDS/NHLBI as partner.

Project Name	Protocol PI	Prevention/ Acute/Recovery	Status Update
PRECISE MRI-T2	Natalia Rost	Prevention	Pending CSP approval, June 2016 grant submission
SCORPION	Kevin Sheth	Prevention	In concept development
PATCH	Maarten Lansberg	Prevention	In concept development
PHAST	Kate Amlie-Lefond, Michael Rivkin, Joan Cox Gill	Acute	In concept development
Acute Biomarker	Robert Meller	Acute	In concept development
IRIIS	Warren Lo	Recovery	In concept development
FURRTHER	Bernadette Boden-Albala	Prevention	In concept development
ETOSHA	Tanya Turan,	Prevention	In concept development
TRANSPORT	Wayne Feng	Recovery	In concept development
VERITAS II	Sepideh Amin-Hanjani	Prevention	In concept development
VAST	Adnan Qureshi	Prevention	Not approved to move forward in its current form by the ESC.

Recruitment and Retention for Underrepresented Minorities and Ethnicities Advisory Working Group

Bernadette Boden-Albala, DrPH MPI: NYCC-RCC (NYU)



Advisory Working Group Members

- Maggie Baker
- Claire Binley
- Bernadette Boden-Albala (Chair)
- Devin Brown
- Dorothy Edwards

- Dawn Kleindorfer (Co-Chair)
- Michael Parides
- Jose Romano
- Patricia Tanzi
- Salina Waddy
- Olajide Williams

Working Group's Mission

• All StrokeNet PD/PI should <u>describe plans</u> to <u>support</u> and <u>optimize</u> the recruitment and retention of underrepresented groups, e.g., racial-ethnic minorities and women, in stroke clinical trials

• Support:

- Evaluate if investigators have access to the populations
- To monitor recruitment of trials as they move forward to "catch" any recruitment problems as they arise

• Optimize:

- Provide tools needed to bring in target populations
- Ensure that trial design, site selection,
- statistical analysis plans are inclusive of racial-ethnic minorities and women

Support: Minority Recruitment and Retention

• 1. Site selection guidance

- Evaluate if investigators have access to the populations
- Guidance on site selection criteria

• 2. Creating minority recruitment and retention plans

- A. Trial mechanics
 - How your study design might influence recruitment and retention
- B. Researcher Narrative
- C. Statistical plan

Site selection guidance

A. Percent of admitted patients' race-ethnicity and gender

Information to make reasonable projections

B. Each site's feasibility to enroll

- Use ICD-9 codes
- Get with the Guidelines metrics
- Real time experience

Minority Recruitment and Retention Plans

A. Trial mechanics

- 1. Trial's eligibility criteria
 - Do the criteria systematically exclude a specific group of people?
- 2. Patient population demographics
 - Vulnerable populations, age, sex, race, ethnicity
- 3. Type of recruitment sites
- 4. Each site's resources
 - CTSA, community outreach etc.
- 5. Enrollment
 - Setting, enrollment hours, language translation services
- 6. Retention
 - Compensation, length of follow-up

Recommendations for Clinical Study Concept Synopsis

Briefly describe the proposed trial design:
Patient selection criteria, including window of treatment:
- Inclusion/Exclusion Criteria
Describe Recruitment and Retention plans 1). Site selection criteria 2). Considerations for underserved populations (i.e., women and racial-ethnic minorities)
Please provide an estimate of your study sample size to assist with the feasibility assessment.
Proposed number of subjects to be enrolled:
Describe the statistical basis for the proposed sample size calculation:
Describe the statistical basis for inclusion of underserved nonulations

Minority Recruitment and Retention Plans

Review to Date

3 proposals

2 approvals

1 under review

- "Approach: Provide an assessment of the outreach and recruitment needs that are unique to the center as well as to the geographical area
- <u>Local needs:</u> Coordination with others for recruitment and retention of subjects for particular research protocols and clinical trials, with a special emphasis on underserved/underrepresented populations. *An outreach plan should address the needs identified, including both strengths and barriers (e.g., parking/transportation).*
- <u>Recruitment methods:</u> 1) Descriptions of seminar or lecture series, or workshops; 2) Outreach to specific communities to publicize research; 3) collaboration with other organizations such as state and local agencies, community/service groups, hospitals, religious organizations, business groups, local medical societies, etc.; and 4) Descriptions of materials (e.g., videos and printed matter)
- <u>Cultural sensitivity:</u> information should be structured so that it can effectively reach diverse populations, including non-English-speaking people."

Key Questions

- What is the underlying minority population that could be in the study? (ex: how many people of X group pass through the doors of Y site)
- How many of out that populations would fit eligibility criteria
- What percentage of those people do investigators actually have access to?

Paradigm Shift in Clinical Trial Proposal and Planning

Nothing can be accomplished in isolation

- Stakeholder engagement
 - NIH
 - Reviewers
 - Principal Investigators
 - Research community

Women and Minorities in StrokeNet Trials: Plans for Analysis and Reporting

NIH Policy and Guidelines*

- When an NIH-defined Phase III clinical trial is proposed, evidence must be reviewed to show whether or not clinically important sex/gender and race/ethnicity differences in the intervention effect are to be expected.
- Cost is not an acceptable reason for exclusion of women and minorities from clinical trials.

NIH Policy and Guidelines - Definitions

Ethnicity

- Hispanic or Latino a person of Cuban, Mexican, Puerto Rican, South or Central American, or other Spanish culture or origin, regardless of race. The term "Spanish origin" can also be used in addition to "Hispanic or Latino."
- Not Hispanic or Latino

Minority Race

- American Indian or Alaska Native a person having origins in any of the original peoples of North,
 Central, or South America, and who maintains tribal affiliations or community attachment.
- Asian a person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam. (Note: Individuals from the Philippine Islands have been recorded as Pacific Islanders in previous data collection strategies.)
- Black or African American a person having origins in any of the black racial groups of Africa. Terms
 such as "Haitian" or "Negro" can be used in addition to "Black or African American."
- Native Hawaiian or Other Pacific Islander a person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.

NIH Policy and Guidelines - Definitions (cont'd)

- Significant Difference difference that is of clinical or public health importance, based on substantial scientific data. This definition differs from the commonly used "statistically significant difference," which refers to the event that, for a given set of data, the statistical test for a difference be achieves statistical significance. Statistical significance depends upon the amount of information, one could find a statistically significant, but clinically small difference that is of very little clinical importance. Conversely, with less information one could find a large difference of potential importance that is not statistically significant.
- <u>Valid Analysis</u> an <u>unbiased assessment</u>. Such an assessment will, on average, yield the correct estimate of the difference in outcomes between two groups of subjects. Valid analysis can and should be conducted for both small and large studies. A valid analysis does not need to have a high statistical power for detecting a stated effect. The principal requirements for ensuring a valid analysis of the question of interest are:
 - allocation of study participants of both sexes/genders (males and females) and different racial/ethnic groups to the intervention and control groups by an unbiased process such as randomization,
 - unbiased evaluation of the outcome(s) of study participants [such as blinded], and
 - use of unbiased statistical analyses and proper methods of inference to estimate and compare the intervention effects among the sex/gender and racial/ethnic groups.

NIH Policy and Guidelines - Scenario 1

If "Prior Studies Support the Existence of Significant Differences":

- The primary question(s) to be addressed by the proposed NIH-defined Phase III clinical trial and the design of that trial must specifically accommodate this. For example differently to an intervention, then the Phase III clinical trial and the design of Recall, clinically important questions, one for men and the other for women, with ade differences
- The Research Plan (for grant applications) or Proposal (for contract solicitations) must include a description of plans to conduct analyses to detect significant differences** In intervention effect.
- Inclusion of the results of sex/gender, race/ethnicity and relevant subpopulations analyses is strongly encouraged in all publication submissions. If these analyses reveal no differences, a brief statement to that effect, indicating the groups and/or subgroups analyzed, will suffice.

NIH Policy and Guidelines - Scenario 2

If "Prior Studies Support No Significant Differences":

• Sex/gender and race/ethnicity will not be required as subject selection criteria. However, the inclusion and analysis of sex/gender and/or racial/ethnic subgroups is still strongly encouraged.

NIH Policy and Guidelines - Scenario 3

If "Prior Studies Neither Suppo" Vague Significant Differences":

- Required to include sufficient and appropriate entry of sex/gender and racial/ethnic participants, so that
 valid analysis of the intervention effects can be performed. However, the trial will not be required to
 provide high statistical power for these comparisons.
- The Research Plan (for grant applications) or Proposal (for contract solicitations) must include a description of plans to conduct valid analysis (see DEFINITIONS Valid Analysis) by sex/gender, racial/ethnic groups, and relevant subpopulations, if applicable.
- Must report in their annual Progress Report cumulative subject accrual and progress in conducting analyses for sex/gender and race/ethnicity differences.
- Inclusion of the results of sex/gender, race/ethnicity and relevant subpopulations analyses is strongly encouraged in all publication submissions. If these analyses reveal no differences, a brief statement to that effect, indicating the groups and/or subgroups analyzed, will suffice.

Comments

- Majority of the studies will fall into scenario 3.
- "Valid analysis" requirements can be met by careful planning and execution of the trial.
- Caveat without "high statistical power", hypothesis testing is likely to be uninformative.
- Recommended approach is to present the treatment effect estimates and their CIs by sex and minority groups, rather than doing statistical tests.
- Require clinical/epidemiological input in determining what is "sufficient and appropriate" number of subjects, and how to ensure and monitor this requirement.
- Clarification needed on how to handle race/ethnicity in non-US sites.

Questions?

