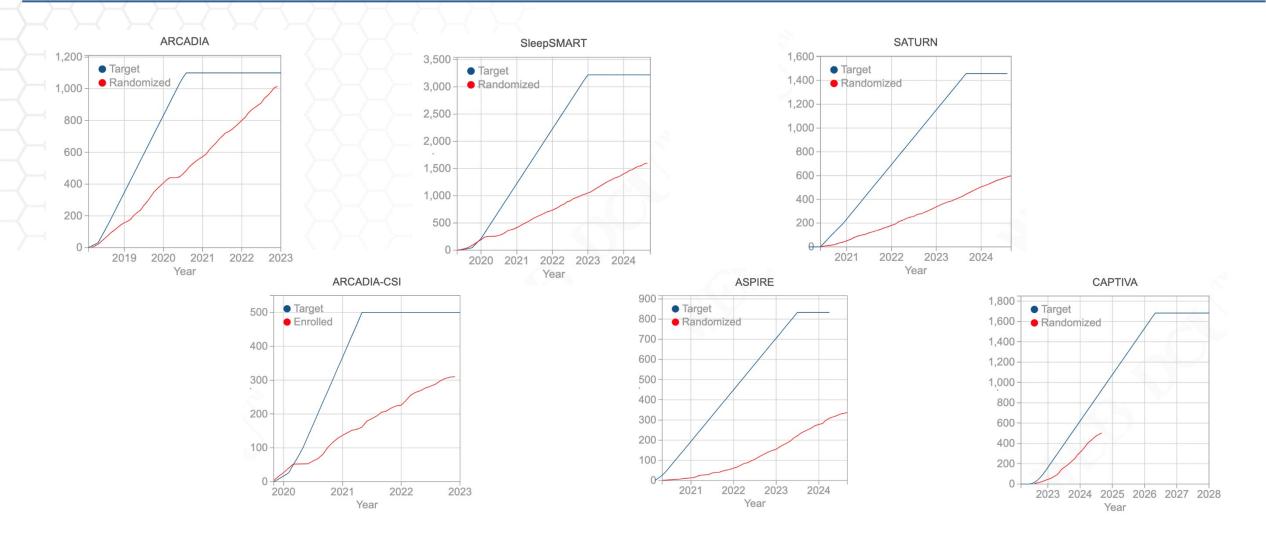
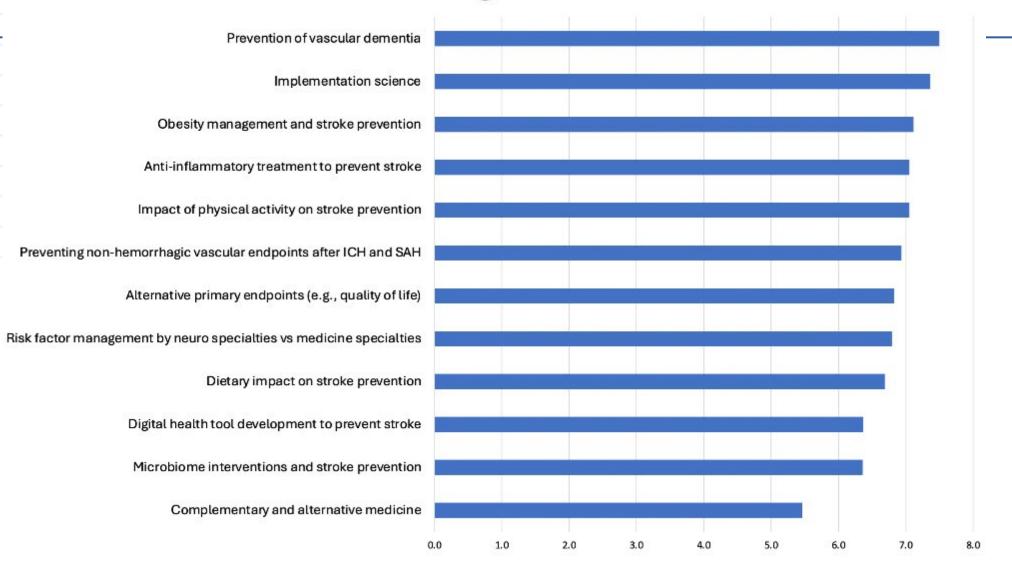


Themes for priority setting conferences **Prevention Group**

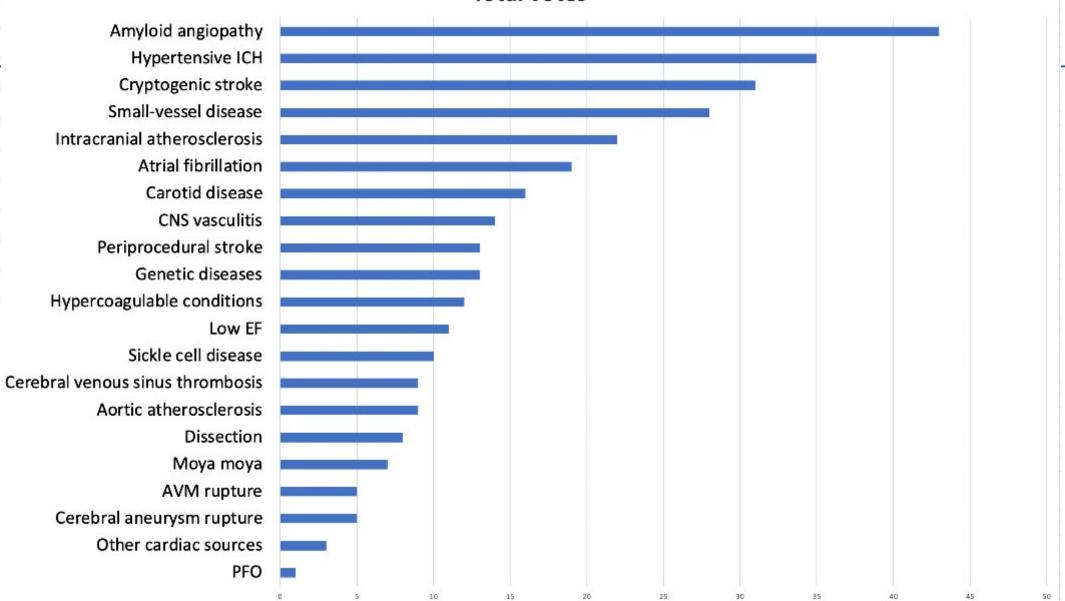

Hooman Kamel on behalf of the Prevention Working Group

StrokeNet experience with prevention trials


Survey of StrokeNet community

Summer 2023

~100 respondents



Average Score

Total votes

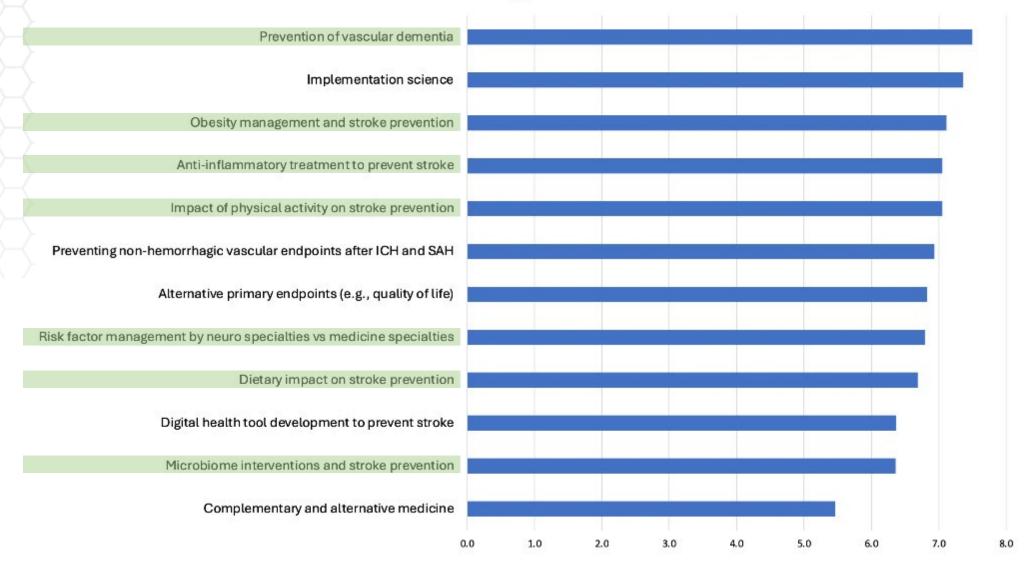
Themes emerging during PWG discussion

- 1. Cerebral small-vessel disease (CAA, hypertensive ICH, and small-vessel disease)
- 2. Broadened focus on fundamental vascular risk factors, most notably obesity/microbiome/diet and cardiometabolic factors such as aldosteronism

Themes emerging during PWG discussion

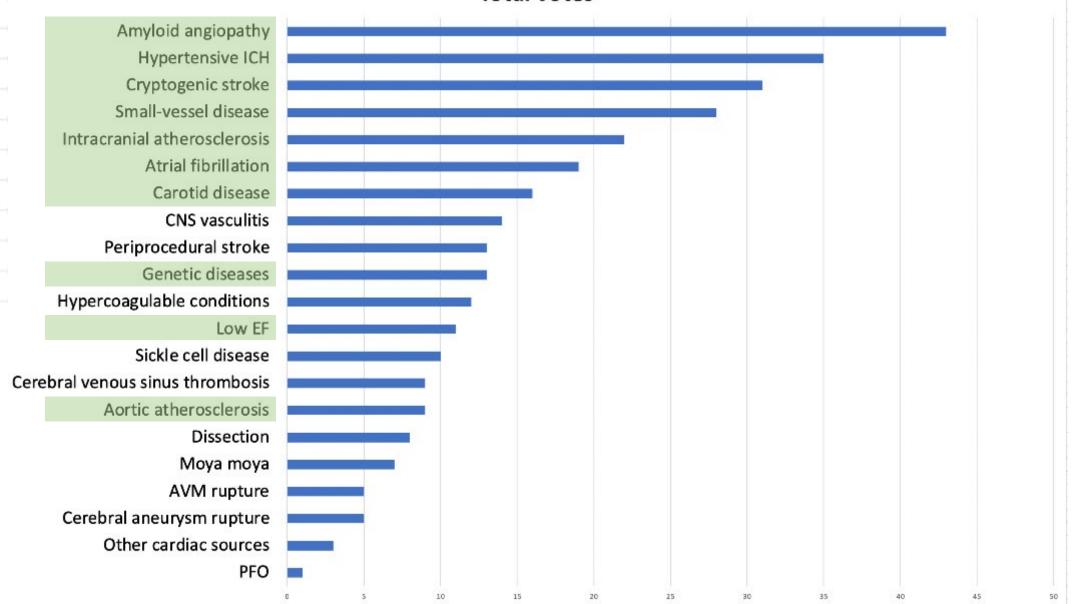
1. Cerebral small-vessel disease (CAA, hypertensive ICH, and small-vessel disease)

Ties in with other important topics of AD immunotherapies and post-stroke cognitive impairment and dementia


Themes emerging during PWG discussion

2. Broadened focus on fundamental vascular risk factors, most notably obesity/microbiome/diet and cardiometabolic factors such as aldosteronism

Ties in with traditional risk factors (AF, atherosclerosis), cryptogenic stroke, novel obesity and other CV drugs, neuro vs medicine management of risk factors, racial and ethnic disparities and SDOH



Average Score

Total votes

Low rates of recurrent stroke after small-vessel occlusion Broader outcomes that are relevant, feasible, acceptable? Combined populations (e.g., deep ICH + lacunar stroke)?

	Higher-targ (n=1519)	let group	Lower-target group (n=1501)		
	Number of patients	Rate (% per patient-year)	Number of patients	Rate (% per patient-year)	
Stroke					
All stroke	152	2.77%	125	2.25%	

Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial

The SPS3 Study Group*

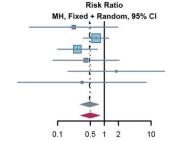
What will shift guidelines? Do we always need stroke-specific trials?

4.4. Glucose

Recommendations for Glucose

Referenced studies that support recommendations are summarized in online Data Supplements 14 and 15.

COR	LOE	Recommendations
1	B-R	2. In patients with an ischemic stroke or TIA who also have diabetes, treatment of diabetes should include glucose-lowering agents with proven cardiovascular benefit to reduce the risk for future major adverse cardiovas- cular events (ie, stroke, MI, cardiovascular death). ^{231–236}



What will shift guidelines? Do we always need stroke-specific trials?

C Stroke

	cole	chicine		control	Weight	Weight	Risk Ratio
Study	Events	Total	Events	Total	(fixed)	(random)	MH, Fixed + Random, 95% CI
Nidorf SM, et al2013	1	282	4	250	7.7%	4.8%	0.22 [0.02, 1.97]
Stefan M Nidorf-2020	16	2762	24	2760	43.9%	57.1%	0.67 [0.35, 1.25]
Jean-Claude Tardif-2019	5	2366	19	2379	34.6%	23.4%	0.26 [0.10, 0.71]
Tong DC-2020	2	396	5	399	9.1%	8.5%	0.40 [0.08, 2.07]
Mewton N-2019	2	101	1	91	1.9%	4.0%	1.80 [0.17, 19.54]
Nina C Raju-2012	0	40	1	40	2.7%	2.3%	0.33 [0.01, 7.95]
Total (fixed effect, 95% CI)		5947		5919	100.0%		0.48 [0.30, 0.76]
Total (random effects, 95% CI)						100.0%	0.50 [0.31, 0.80]
Heterogeneity: $Tau^2 = 0$; $Chi^2 = 4.20$,	df = 5 (P =)	0.52); I ² =	0%				
T	- 0.00 (D						

Test for overall effect (fixed effect): Z = -3.09 (P < 0.01) Test for overall effect (fixed effect): Z = -3.09 (P < 0.01)

Colchicine and usual care Usual care alone Hazard ratio (n=1569) (95% CI) (n=1575) n(%) **Events** per n (%) Events per 100 person-years 100 person-years 153 (9.8%) 185 (11.7%) 0.84 (0.68-1.05) 3.33 3.92

Long-term colchicine for the prevention of vascular recurrent events in non-cardioembolic stroke (CONVINCE): a randomised controlled trial

Peter Kelly, Robin Lemmens, Christian Weimar, Cathal Walsh, Francisco Purroy, Mark Barber, Ronan Collins, Simon Cronin, Anna Czlonkowska, Philippe Desfontaines, Adinda De Pauw, Nicholas Richard Evans, Urs Fischer, Catarina Fonseca, John Forbes, Michael D Hill, Dalius Jatuzis, Janika Kõrv, Peter Kraft, Christina Kruuse, Catherine Lynch, Dominick McCabe, Robert Mikulik, Sean Murphy, Paul Nederkoorn, Martin O'Donnell, Peter Sandercock, Bernadette Schroeder, Gek Shim, Katrina Tobin, David J Williams, Christopher Price

Colchicine and coronary heart disease risks: A meta-analysis of randomized controlled clinical trials

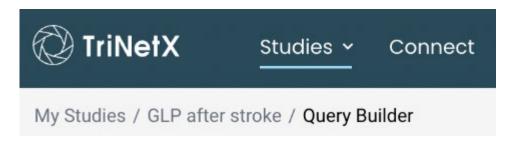
Zijun Ma¹, Jun Chen^{1*}, Kaiqin Jin² and Xin Chen^{1*}

Guidelines vs actual practice

4.4. Glucose

Recommendations for Glucose

Referenced studies that support recommendations are summarized in


online Data Su	pplements 14 and 15.

COR	LOE	Recommendations
1	B-R	 In patients with an ischemic stroke or TIA who also have diabetes, treatment of diabetes should include glucose-lowering agents with proven cardiovascular benefit to reduce the risk for future major adverse cardiovas- cular events (ie, stroke, MI, cardiovascular death).^{231–236}

Guidelines vs actual practice

Across 24 U.S. healthcare systems: 398,177 patients with diabetes and ischemic stroke 80,128 (**20%**) receiving GLP-1 agonists or SGLT2 inhibitors

More holistic preventive care More integration with other specialties

